cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157297 Positive numbers y such that y^2 is of the form x^2+(x+233)^2 with integer x.

Original entry on oeis.org

185, 233, 317, 793, 1165, 1717, 4573, 6757, 9985, 26645, 39377, 58193, 155297, 229505, 339173, 905137, 1337653, 1976845, 5275525, 7796413, 11521897, 30748013, 45440825, 67154537, 179212553, 264848537, 391405325, 1044527305, 1543650397
Offset: 1

Views

Author

Klaus Brockhaus, Apr 11 2009

Keywords

Comments

(-57, a(1)) and (A129625(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 1.

Examples

			(-57, a(1)) = (-57, 185) is a solution: (-57)^2+(-57+233)^2 = 3249+30976 = 34225 = 185^2.
(A129625(1), a(2)) = (0, 233) is a solution: 0^2+(0+233)^2 = 54289 = 233^2.
(A129625(3), a(4)) = (432, 793) is a solution: 432^2+(432+233)^2 = 186624+442225 = 628849 = 793^2.
		

Crossrefs

Cf. A129625, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233), A157299 (decimal expansion of (82611+44030*sqrt(2))/233^2).

Programs

  • Magma
    I:=[185,233,317,793,1165,1717]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Mar 29 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {185,233,317,793,1165,1717}, 50] (* G. C. Greubel, Mar 29 2018 *)
  • PARI
    {forstep(n=-60, 1100000000, [3,1], if(issquare(2*n^2+466*n+54289, &k),print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=185, a(2)=233, a(3)=317, a(4)=793, a(5)=1165, a(6)=1717.
G.f.: (1-x)*(185 +418*x +735*x^2 +418*x^3 +185*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 233*A001653(k) for k >= 1.