cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A158119 Unsigned bisection of A157308 and A157310.

Original entry on oeis.org

1, 1, 3, 38, 947, 37394, 2120190, 162980012, 16330173251, 2070201641498, 324240251016266, 61525045423103316, 13913915097436287598, 3698477457114061621492, 1141824214469896983332508
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 38*x^3 + 947*x^4 + 37394*x^5 + 2120190*x^6 + 162980012*x^7 + 16330173251*x^8 + 2070201641498*x^9 + 324240251016266*x^10 +...
RELATED FUNCTIONS.
G.f. of A157308, B(x) = x + A(-x^2), satisfies the condition
that both B(x) and F(x) = B(x*F(x)) = o.g.f. of A155585
have zeros for every other coefficient after initial terms:
A157308 = [1,1,-1,0,3,0,-38,0,947,0,-37394,0,2120190,0,...];
A155585 = [1,1,0,-2,0,16,0,-272,0,7936,0,-353792,0,...].
...
G.f. of A157310, C(x) = 2+x - A(-x^2), satisfies the condition
that both C(x) and G(x) = C(x/G(x)) = o.g.f. of A157309
have zeros for every other coefficient after initial terms:
A157310 = [1,1,1,0,-3,0,38,0,-947,0,37394,0,-2120190,0,...];
A157309 = [1,1,0,-1,0,9,0,-176,0,5693,0,-272185,0,...].
...
		

Crossrefs

Programs

  • Mathematica
    terms = 30;
    F[x_] = Sum[n! x^n/Product[(1 + 2 k x), {k, 1, n}], {n, 0, terms+1}] + O[x]^(terms+1);
    A[x_] = x/InverseSeries[x F[x]];
    Partition[CoefficientList[A[x], x][[1 ;; terms]], 2][[All, 1]] // Abs (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, 2*n, if(#A%2==0, A=concat(A, 0);); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); (-1)^n*Vec(x/serreverse(x*Ser(A)))[2*n+1]}
    
  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 04 2020

Formula

G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^2*x/(A(x) - 3^2*x/(A(x) - 4^2*x/(A(x) - 5^2*x/(A(x) - 6^2*x/(A(x) - ...)))))), a continued fraction. - Paul D. Hanna, Nov 04 2020
Conjecture: a(m) == 1 (mod 2) iff m is a power of 2 or m=0. [Paul D. Hanna, Mar 16 2009]
a(n) ~ 2^(4*n + 3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020

A157309 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)) = o.g.f. of A157310 have zeros for every other coefficient after initial terms; g.f. of dual sequence A157308 satisfies the same condition.

Original entry on oeis.org

1, 1, 0, -1, 0, 9, 0, -176, 0, 5693, 0, -272185, 0, 18043492, 0, -1587355800, 0, 179258676373, 0, -25305967691715, 0, 4370075849887361, 0, -906689353191842372, 0, 222613537277330398444, 0, -63850898347335510126988
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2009

Keywords

Examples

			G.f.: A(x) = 1 + x - x^3 + 9*x^5 - 176*x^7 + 5693*x^9 -+...
RELATED FUNCTIONS.
If F(x) = A(x*F(x)) then F(x) = o.g.f. of A157310:
A157310 = [1,1,1,0,-3,0,38,0,-947,0,37394,0,-2120190,0,...];
has zeros for every other coefficient after initial terms.
...
O.g.f. A(x) has similar properties as o.g.f. of A157308:
A157308 = [1,1,-1,0,3,0,-38,0,947,0,-37394,0,2120190,0,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, 0);); if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}

Formula

Let F(x) = o.g.f. of A157310, then F(x) satisfies:
A(x) = Series_Reversion(x/F(x))/x;
A(x) = F(x/A(x));
F(x) = A(x*F(x));
where A157310 has zeros for every other term after initial [1,1,1].

A157308 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)) = g.f. of A155585 have zeros for every other coefficient after initial terms; g.f. of dual sequence A157309 satisfies the same condition.

Original entry on oeis.org

1, 1, -1, 0, 3, 0, -38, 0, 947, 0, -37394, 0, 2120190, 0, -162980012, 0, 16330173251, 0, -2070201641498, 0, 324240251016266, 0, -61525045423103316, 0, 13913915097436287598, 0, -3698477457114061621492, 0
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2009

Keywords

Comments

After initial 2 terms, reversing signs yields A157310.
Conjecture: a(m) == 1 (mod 2) iff m is a power of 2 or m=0. [Paul D. Hanna, Mar 17 2009]

Examples

			G.f.: A(x) = 1 + x - x^2 + 3*x^4 - 38*x^6 + 947*x^8 - 37394*x^10 +-...
RELATED FUNCTIONS.
If F(x) = A(x*F(x)) then F(x) = o.g.f. of A155585:
A155585 = [1,1,0,-2,0,16,0,-272,0,7936,0,-353792,0,...];
...
If G(x) = A(x*G(x))/(1+x) then G(x) = o.g.f. of A122045:
A122045 = [1,0,-1,0,5,0,-61,0,1385,0,-50521,0,2702765,0,...];
...
		

Crossrefs

Cf. A157309, A157310, A157304, A157305, A155585, A122045 (Euler numbers).
Cf. A158119. [Paul D. Hanna, Mar 17 2009]

Programs

  • Mathematica
    terms = 28;
    F[x_] = Sum[n! x^n/Product[(1 + 2k x), {k, 1, n}], {n, 0, terms+1}] + O[x]^(terms+1);
    A[x_] = x/InverseSeries[x F[x]];
    CoefficientList[A[x], x][[1 ;; terms]] (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, 0);); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}

Formula

Let F(x) = o.g.f. of A155585, then o.g.f. A(x) satisfies:
A(x) = x/serreverse(x*F(x));
A(x) = 2x + F( -x/(A(x) - 2x) );
A(x) = F(x/A(x));
F(x) = A(x*F(x));
where A155585 is defined by e.g.f. exp(x)/cosh(x).
...
Let G(x) = o.g.f. of A122045, then o.g.f. A(x) satisfies:
A(x) = x + x/serreverse(x*G(x));
A(x) = x + G( x/(A(x) - x) );
G(x) = A(x*G(x))/(1+x);
where A122045 is the Euler numbers.
...
O.g.f.: A(x) = 2*(1+x) - H(x) where H(x) = g.f. of A157310.

A172396 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A003701(n)*x^n.

Original entry on oeis.org

1, 1, 1, 0, 3, 0, 38, 0, 947, 0, 37394, 0, 2120190, 0, 162980012, 0, 16330173251, 0, 2070201641498, 0, 324240251016266, 0, 61525045423103316, 0, 13913915097436287598, 0, 3698477457114061621492, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2010

Keywords

Comments

The e.g.f. of A003701 is exp(x)/cos(x) = Sum_{n>=0} A003701(n)*x^n/n!.
Compare to A157308 and A157310.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^4 + 38*x^6 + 947*x^8 + 37394*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A003701:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 +...
while the e.g.f. of A003701 is given by:
exp(x)/cos(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 12*x^4/4! + 36*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),G=sum(m=0,n,m!*polcoeff(exp(X)/cos(X),m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G),n)}

Formula

a(n) = |A157308(n)| = |A157310(n)| for n>=0.
a(2n) = A158119(n) for n>=0; a(2n-1) = 0 for n>=2, with a(1)=1.
G.f. A = A(x) satisfies: A(x) = 1/(1-x/A - (x/A)^2/(1-x/A - 2^2*(x/A)^2/(1-x/A - 3^2*(x/A)^2/(1-x/A - 4^2*(x/A)^2/(1-x/A - 5^2*(x/A)^2/(1-x/A -...)))))), a recursive continued fraction. [From Paul D. Hanna, Jan 05 2012]
Showing 1-4 of 4 results.