cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A157308 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)) = g.f. of A155585 have zeros for every other coefficient after initial terms; g.f. of dual sequence A157309 satisfies the same condition.

Original entry on oeis.org

1, 1, -1, 0, 3, 0, -38, 0, 947, 0, -37394, 0, 2120190, 0, -162980012, 0, 16330173251, 0, -2070201641498, 0, 324240251016266, 0, -61525045423103316, 0, 13913915097436287598, 0, -3698477457114061621492, 0
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2009

Keywords

Comments

After initial 2 terms, reversing signs yields A157310.
Conjecture: a(m) == 1 (mod 2) iff m is a power of 2 or m=0. [Paul D. Hanna, Mar 17 2009]

Examples

			G.f.: A(x) = 1 + x - x^2 + 3*x^4 - 38*x^6 + 947*x^8 - 37394*x^10 +-...
RELATED FUNCTIONS.
If F(x) = A(x*F(x)) then F(x) = o.g.f. of A155585:
A155585 = [1,1,0,-2,0,16,0,-272,0,7936,0,-353792,0,...];
...
If G(x) = A(x*G(x))/(1+x) then G(x) = o.g.f. of A122045:
A122045 = [1,0,-1,0,5,0,-61,0,1385,0,-50521,0,2702765,0,...];
...
		

Crossrefs

Cf. A157309, A157310, A157304, A157305, A155585, A122045 (Euler numbers).
Cf. A158119. [Paul D. Hanna, Mar 17 2009]

Programs

  • Mathematica
    terms = 28;
    F[x_] = Sum[n! x^n/Product[(1 + 2k x), {k, 1, n}], {n, 0, terms+1}] + O[x]^(terms+1);
    A[x_] = x/InverseSeries[x F[x]];
    CoefficientList[A[x], x][[1 ;; terms]] (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, 0);); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}

Formula

Let F(x) = o.g.f. of A155585, then o.g.f. A(x) satisfies:
A(x) = x/serreverse(x*F(x));
A(x) = 2x + F( -x/(A(x) - 2x) );
A(x) = F(x/A(x));
F(x) = A(x*F(x));
where A155585 is defined by e.g.f. exp(x)/cosh(x).
...
Let G(x) = o.g.f. of A122045, then o.g.f. A(x) satisfies:
A(x) = x + x/serreverse(x*G(x));
A(x) = x + G( x/(A(x) - x) );
G(x) = A(x*G(x))/(1+x);
where A122045 is the Euler numbers.
...
O.g.f.: A(x) = 2*(1+x) - H(x) where H(x) = g.f. of A157310.

A338633 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - ...)))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 7, 250, 21867, 3725702, 1096355494, 513875333940, 361121449989171, 362961084011245198, 502496711191618404882, 929337000359116522329132, 2238572532534241145084855934, 6875030222633195280825967544508, 26436454884630260855874989243890732
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Comments

Compare to the continued fraction relation for the g.f. of A158119 and A338634.

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 250*x^3 + 21867*x^4 + 3725702*x^5 + 1096355494*x^6 + 513875333940*x^7 + 361121449989171*x^8 + 362961084011245198*x^9 + ...
where
1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - 7^3*x/(A(x) - 8^3*x/(A(x) - 9^3*x/(A(x) - ...))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^3*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

For n > 0, a(n) is odd iff n is a power of 2 (conjecture).
From Vaclav Kotesovec, Nov 12 2020: (Start)
a(n) ~ sqrt(3/(2*Pi)) * (6*Gamma(2/3)/Gamma(1/3)^2)^(3*n + 3/2) * (n!)^3 / sqrt(n).
a(n) ~ 2^(6*n + 4) * 3^(3*n/2 + 5/4) * Pi^(3*n + 5/2) * n^(3*n + 1) / Gamma(1/3)^(9*(n + 1/2)) / exp(3*n). (End)

A338634 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^4*x/(A(x) - 3^4*x/(A(x) - 4^4*x/(A(x) - 5^4*x/(A(x) - 6^4*x/(A(x) - ... )))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 15, 1490, 472475, 367254494, 596838469302, 1812465211795364, 9460229930323620755, 79588323526110945959270, 1025816228173896271039326050, 19441688693651416990291991566332, 523762848713992063145153491388390686, 19495503038639783268900576813041922912172
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f.: A(x) = 1 + x + 15*x^2 + 1490*x^3 + 472475*x^4 + 367254494*x^5 + 596838469302*x^6 + 1812465211795364*x^7 + 9460229930323620755*x^8 + ...
where
1 = A(x) - x/(A(x) - 2^4*x/(A(x) - 3^4*x/(A(x) - 4^4*x/(A(x) - 5^4*x/(A(x) - 6^4*x/(A(x) - 7^4*x/(A(x) - 8^4*x/(A(x) - 9^4*x/(A(x) - 10^4*x/(A(x) - ... )))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^4*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

For n > 0, a(n) is odd iff n is a power of 2 (conjecture).
From Vaclav Kotesovec, Nov 12 2020: (Start)
a(n) ~ sqrt(2/Pi) * (8*sqrt(Pi) / Gamma(1/4)^2)^(4*n + 2) * (n!)^4 / sqrt(n).
a(n) ~ 2^(12*n + 17/2) * Pi^(2*n + 5/2) * n^(4*n + 3/2) / (Gamma(1/4)^(8*n + 4) * exp(4*n)). (End)

A158120 Unsigned bisection of A157304 and A157305.

Original entry on oeis.org

1, 2, 26, 1378, 141202, 22716418, 5218302090, 1619288968386, 653379470919714, 333014944014777730, 209463165121436380282, 159492000935562428176162, 144654795258284936534929586, 154140229756873813307283828098
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 26*x^2 + 1378*x^3 + 141202*x^4 +...
RELATED FUNCTIONS.
G.f. of A157305, B(x) = x + A(-x^2), satisfies the condition
that both B(x) and F(x) = B(x*F(x)^2) = o.g.f. of A157307
have zeros for every other coefficient after initial terms:
A157305 = [1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,...];
A157307 = [1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,...].
...
G.f. of A157304, C(x) = 2+x - A(-x^2), satisfies the condition
that both C(x) and G(x) = C(x/G(x)^2) = o.g.f. of A157302
have zeros for every other coefficient after initial terms:
A157308 = [1,1,2,0,-26,0,1378,0,-141202,0,22716418,0,...];
A157302 = [1,1,0,-5,0,183,0,-14352,0,1857199,0,-355082433,0,...].
...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, 2*n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); (-1)^n*Vec(x/serreverse(x*Ser(A)))[2*n+1]}

A338632 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3*x/(A(x) - 5*x/(A(x) - 7*x/(A(x) - 9*x/(A(x) - ...))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 2, 14, 166, 2714, 55866, 1377942, 39493518, 1288115570, 47086272754, 1906554619166, 84711219819062, 4098314765667082, 214489189682087594, 12075596389435432230, 727783484288200558110, 46755528594469120151010, 3189788089674119448202722
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 166*x^4 + 2714*x^5 + 55866*x^6 + 1377942*x^7 + 39493518*x^8 + 1288115570*x^9 + 47086272754*x^10 + ...
where
1 = A(x) - x/(A(x) - 3*x/(A(x) - 5*x/(A(x) - 7*x/(A(x) - 9*x/(A(x) - 11*x/(A(x) - 13*x/(A(x) - 15*x/(A(x) - 17*x/(A(x) - 19*x/(A(x) - ...)))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (2*(#A-i)+1)*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 2 (mod 4) for n > 1 (conjecture).
For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).
For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).
a(n) ~ 2^(2*n) * n^(n - 1/2) / (sqrt(Pi) * exp(n + 1/2)). - Vaclav Kotesovec, Nov 12 2020

A338635 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3*x/(A(x) - 6*x/(A(x) - 10*x/(A(x) - 15*x/(A(x) - 21*x/(A(x) - 28*x/(A(x) - ... - (n*(n+1)/2)*x/(A(x) - ...))))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 2, 17, 274, 6749, 231276, 10465440, 604220826, 43388420549, 3797054582794, 398157728106929, 49311011342018168, 7124133759620985652, 1187818792835133749984, 226420783437860189825400, 48936975180367428260159850, 11904986360488865549641429797, 3238569202146221391019821488694
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 17*x^3 + 274*x^4 + 6749*x^5 + 231276*x^6 + 10465440*x^7 + 604220826*x^8 + 43388420549*x^9 + 3797054582794*x^10 + ...
where
1 = A(x) - x/(A(x) - 3*x/(A(x) - 6*x/(A(x) - 10*x/(A(x) - 15*x/(A(x) - 21*x/(A(x) - 28*x/(A(x) - 36*x/(A(x) - 45*x/(A(x) - 55*x/(A(x) - ...)))))))))), a continued fraction relation in which the triangular numbers appear as coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)*(#A-i+2)/2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

For n>0, a(n) is odd iff n = A118113(k) for some k >= 1, where A118113(k) = 2*Fibbinary(k) + 1 (conjecture).
a(n) ~ 2^(3*n + 5) * n^(2*n + 3/2) / (Pi^(2*n + 3/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020

A338636 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - ...))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 8, 272, 19480, 2353568, 429016872, 110046546096, 37825128764472, 16793443888112960, 9358539226503013960, 6397425528561882140240, 5264539843826571207135320, 5134140710880677886077086432, 5855644914993764696284947092840
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f. A(x) = 1 + x + 8*x^2 + 272*x^3 + 19480*x^4 + 2353568*x^5 + 429016872*x^6 + 110046546096*x^7 + 37825128764472*x^8 + 16793443888112960*x^9 + ...
where
1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - 11^2*x/(A(x) - 13^2*x/(A(x) - 15^2*x/(A(x) - 17^2*x/(A(x) - 19^2*x/(A(x) - ...)))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (2*(#A-i)+1)^2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 0 (mod 8) for n > 1 (conjecture).
For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).
For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).
a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020

A172396 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A003701(n)*x^n.

Original entry on oeis.org

1, 1, 1, 0, 3, 0, 38, 0, 947, 0, 37394, 0, 2120190, 0, 162980012, 0, 16330173251, 0, 2070201641498, 0, 324240251016266, 0, 61525045423103316, 0, 13913915097436287598, 0, 3698477457114061621492, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2010

Keywords

Comments

The e.g.f. of A003701 is exp(x)/cos(x) = Sum_{n>=0} A003701(n)*x^n/n!.
Compare to A157308 and A157310.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^4 + 38*x^6 + 947*x^8 + 37394*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A003701:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 +...
while the e.g.f. of A003701 is given by:
exp(x)/cos(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 12*x^4/4! + 36*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),G=sum(m=0,n,m!*polcoeff(exp(X)/cos(X),m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G),n)}

Formula

a(n) = |A157308(n)| = |A157310(n)| for n>=0.
a(2n) = A158119(n) for n>=0; a(2n-1) = 0 for n>=2, with a(1)=1.
G.f. A = A(x) satisfies: A(x) = 1/(1-x/A - (x/A)^2/(1-x/A - 2^2*(x/A)^2/(1-x/A - 3^2*(x/A)^2/(1-x/A - 4^2*(x/A)^2/(1-x/A - 5^2*(x/A)^2/(1-x/A -...)))))), a recursive continued fraction. [From Paul D. Hanna, Jan 05 2012]
Showing 1-8 of 8 results.