A157324 a(n) = 36*n^2 + n.
37, 146, 327, 580, 905, 1302, 1771, 2312, 2925, 3610, 4367, 5196, 6097, 7070, 8115, 9232, 10421, 11682, 13015, 14420, 15897, 17446, 19067, 20760, 22525, 24362, 26271, 28252, 30305, 32430, 34627, 36896, 39237, 41650, 44135, 46692, 49321, 52022
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[37, 146, 327]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{37,146,327},50] (* Vincenzo Librandi, Jan 26 2012 *) Table[36n^2+n,{n,50}] (* Harvey P. Dale, Mar 09 2019 *)
-
PARI
for(n=1, 40, print1(36*n^2 + n", ")); \\ Vincenzo Librandi, Jan 26 2012
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012
G.f.: x*(-37 - 35*x)/(x-1)^3. - Vincenzo Librandi, Jan 26 2012
Comments