A157346 Products of 3 distinct Sophie Germain primes.
30, 66, 110, 138, 165, 174, 230, 246, 290, 318, 345, 410, 435, 498, 506, 530, 534, 615, 638, 678, 759, 786, 795, 830, 890, 902, 957, 1038, 1074, 1130, 1146, 1166, 1245, 1265, 1310, 1334, 1335, 1353, 1398, 1434, 1506, 1595, 1686, 1695, 1730, 1749, 1758, 1790
Offset: 1
Keywords
Examples
30 = 2*3*5; 2,3 and 5 are distinct Sophie Germain primes. 66 = 2*3*11; 2,3 and 11 are distinct Sophie Germain primes.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[2*c+1]&&PrimeQ[2*d+1]&&PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,7!}];lst With[{sgps=Select[Prime[Range[100]],PrimeQ[2#+1]&]},Take[Union[ Times@@@ Subsets[sgps,{3}]],60]] (* Harvey P. Dale, Aug 10 2011 *)