A157352 Products (semiprimes) of two distinct safe primes.
35, 55, 77, 115, 161, 235, 253, 295, 329, 413, 415, 517, 535, 581, 649, 749, 835, 895, 913, 1081, 1135, 1169, 1177, 1253, 1315, 1357, 1589, 1735, 1795, 1837, 1841, 1909, 1915, 1969, 2335, 2395, 2429, 2461, 2497, 2513, 2515, 2681, 2773, 2815, 2893, 2935
Offset: 1
Keywords
Examples
a(1) = 35 since 35 = 5 * 7, and (5 - 1)/2 = 2 and (7 - 1)/2 = 3 are both prime, thus 5 and 7 are distinct safe primes.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=Length[First/@FactorInteger[n]];If[a==2,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];If[PrimeQ[(c-1)/2]&&PrimeQ[(d-1)/2],AppendTo[lst,n]]]],{n,7!}];lst Select[Select[Range@ 3000, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *) Module[{upto=3000,sp},sp=Select[Prime[Range[PrimePi[upto/5]]],PrimeQ[(#-1)/2]&];Select[Union[Times@@@Subsets[sp,{2}]],#<+upto&]] (* Harvey P. Dale, Aug 25 2017 *)
Extensions
Example corrected by Harvey P. Dale, Aug 25 2017
Comments