A157458 Triangle, read by rows, double tent function: T(n,k) = min(1 + 2*k, 1 + 2*(n-k), n).
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 6, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 8, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1
Offset: 0
Examples
Triangle begins as: 0; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 3, 4, 3, 1; 1, 3, 5, 5, 3, 1; 1, 3, 5, 6, 5, 3, 1; 1, 3, 5, 7, 7, 5, 3, 1; 1, 3, 5, 7, 8, 7, 5, 3, 1; 1, 3, 5, 7, 9, 9, 7, 5, 3, 1; 1, 3, 5, 7, 9, 10, 9, 7, 5, 3, 1;
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Programs
-
Maple
T := proc(m,n) return min(1+2*m, 1+2*(n-m), n): end: seq(seq(T(m,n),m=0..n),n=0..14); # Nathaniel Johnston, Apr 29 2011
-
Mathematica
T[n_, k_]:= Min[1+2*k, 1+2*(n-k), n]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten
Formula
T(n, k) = min(1 + 2*k, 1 + 2*(n - k), n).
From Yu-Sheng Chang, May 19 2020: (Start)
O.g.f.: F(z,v) = (1+v)*z/((1-v*z-1)*(1-z)*(1-v*z^2)).
T(n,k) = [v^k] (1+v)*(2*v^(n+1)+2-((sqrt(v)-1)^2 * (-1)^n + (sqrt(v)+1)^2) * v^((1/2)*n))/(2*(v-1)^2). (End)
Extensions
Edited by N. J. A. Sloane, Aug 27 2009
More terms from and partially edited by G. C. Greubel, May 21 2020
Comments