A157484 Numbers k such that k+-1 are divisible by exactly 4 primes, counted with multiplicity.
55, 89, 151, 197, 233, 249, 295, 307, 329, 341, 343, 349, 461, 489, 491, 569, 571, 665, 713, 739, 775, 851, 857, 859, 869, 871, 949, 1013, 1015, 1061, 1097, 1111, 1149, 1191, 1205, 1207, 1209, 1211, 1219, 1255, 1275, 1277, 1291, 1303, 1315, 1421, 1431, 1449, 1483
Offset: 1
Keywords
Examples
55 is a term: 55-1 = 54 = 2*3*3*3 and 55+1 = 56 = 2*2*2*7.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
q=4;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,7!}];lst SequencePosition[PrimeOmega[Range[1200]],{4,,4}][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, May 08 2019 *)
-
PARI
is(k) = bigomega(k-1)==4 && bigomega(k+1)==4; \\ Jinyuan Wang, Mar 22 2020