A157487 Numbers k such that k-1 and k+1 are each the product of exactly 7 primes, counted with multiplicity.
10529, 15391, 17983, 18751, 22049, 23489, 24751, 26081, 29249, 32561, 35153, 43471, 49951, 52975, 58049, 58481, 67229, 67231, 70687, 71873, 72415, 76049, 77921, 79001, 79649, 82783, 83249, 85751, 88289, 93799, 95551, 97471, 102545
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..3000
Programs
-
Maple
with(numtheory): a := proc (n) if bigomega(n-1) = 7 and bigomega(n+1) = 7 then n else end if end proc: seq(a(n), n = 2 .. 120000); # Emeric Deutsch, Mar 07 2009
-
Mathematica
q=7;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,9!}];lst Select[Range[110000],PrimeOmega[#+{1,-1}]=={7,7}&] (* Harvey P. Dale, Apr 04 2015 *) Mean/@SequencePosition[PrimeOmega[Range[105000]],{7,,7}] (* _Harvey P. Dale, Sep 10 2022 *)
Extensions
More terms from Emeric Deutsch, Mar 07 2009
Comments