A157522 Triangle T(n, k) = f(n, k) + f(n, n-k) - 1, where f(n, k) = k if k <= floor(n/4), floor(n/2) - k if floor(n/4) < k <= floor(n/2), k - floor(n/2) if floor(n/2) < k <= floor(3*n/4), otherwise n-k, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 3, 1, 1, 3, 2, 2, 3, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 4, 2, 2, 4, 3, 1, 1, 3, 5, 3, 1, 3, 5, 3, 1, 1, 3, 5, 4, 2, 2, 4, 5, 3, 1, 1, 3, 5, 5, 3, 1, 3, 5, 5, 3, 1, 1, 3, 5, 6, 4, 2, 2, 4, 6, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 6, 4, 2, 2, 4, 6, 7, 5, 3, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 3, 1, 3, 1; 1, 3, 2, 2, 3, 1; 1, 3, 3, 1, 3, 3, 1; 1, 3, 4, 2, 2, 4, 3, 1; 1, 3, 5, 3, 1, 3, 5, 3, 1; 1, 3, 5, 4, 2, 2, 4, 5, 3, 1; 1, 3, 5, 5, 3, 1, 3, 5, 5, 3, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A157523.
Programs
-
Mathematica
f[n_, k_]= 1 +If[k<=Floor[n/4], k, If[Floor[n/4]
G. C. Greubel, Jan 22 2022 *) -
Sage
def f(n, k): if (k <= (n//4)): return k+1 elif ((n//4) < k <= (n//2)): return (n//2)-k+1 elif ((n//2) < k <= (3*n//4)): return k+1-(n//2) else: return n-k+1 def T(n,k): return f(n,k) + f(n,n-k) - 1 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 22 2022
Formula
T(n, k) = f(n, k) + f(n, n-k) - 1, where f(n, k) = k if k <= floor(n/4), floor(n/2) - k if floor(n/4) < k <= floor(n/2), k - floor(n/2) if floor(n/2) < k <= floor(3*n/4), otherwise n-k.
From G. C. Greubel, Jan 22 2022: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = 1.
T(2*n+1, n) = A040000(n).
Sum_{k=0..n} T(n, k) = A302488(n). (End)
Extensions
Edited by N. J. A. Sloane, Mar 05 2009
Comments