cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157629 A general recursion triangle with third part a power triangle:m=2; Power triangle: f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)]; Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) + (m*k + 1)*A(n - 1, k, m) + m*f(n, k, m)*A(n - 2, k - 1, m).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 43, 43, 1, 1, 148, 590, 148, 1, 1, 469, 5018, 5018, 469, 1, 1, 1438, 34047, 91492, 34047, 1438, 1, 1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1, 1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1, 1, 39337
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Row sums are:
{1, 2, 12, 88, 888, 10976, 162464, 2793792, 54779904, 1206055680, 29460493056,...}.

Examples

			{1},
{1, 1},
{1, 10, 1},
{1, 43, 43, 1},
{1, 148, 590, 148, 1},
{1, 469, 5018, 5018, 469, 1},
{1, 1438, 34047, 91492, 34047, 1438, 1},
{1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1},
{1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1},
{1, 39337, 6188356, 117961172, 478838974, 478838974, 117961172, 6188356, 39337, 1},
{1, 118066, 32448653, 1015124312, 7053594482, 13257922028, 7053594482, 1015124312, 32448653, 118066, 1}
		

Crossrefs

Programs

  • Mathematica
    A[n_, 0, m_] := 1; A[n_, n_, m_] := 1;
    A[n_, k_, m_] := (m*(n - k) + 1)*A[n - 1, k - 1, m] + (m*k + 1)*A[n - 1, k, m] + m*f[n, k, m]*A[n - 2, k - 1, m];
    Table[A[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
    Table[Flatten[Table[Table[A[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
    Table[Table[Sum[A[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];

Formula

m=0:Pascal:m=1Eulerian numbers;
m=2;
Power triangle:
f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)];
Recursion:
A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) +
(m*k + 1)*A(n - 1, k, m) +
m*f(n, k, m)*A(n - 2, k - 1, m).