A157654 Triangle T(n, k, m) = 1 if k = 0 or k = n, otherwise m*abs( (n-k)^(m-1) - k^(m-1) ), with m = 2, read by rows.
1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 4, 0, 4, 1, 1, 6, 2, 2, 6, 1, 1, 8, 4, 0, 4, 8, 1, 1, 10, 6, 2, 2, 6, 10, 1, 1, 12, 8, 4, 0, 4, 8, 12, 1, 1, 14, 10, 6, 2, 2, 6, 10, 14, 1, 1, 16, 12, 8, 4, 0, 4, 8, 12, 16, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 0, 1; 1, 2, 2, 1; 1, 4, 0, 4, 1; 1, 6, 2, 2, 6, 1; 1, 8, 4, 0, 4, 8, 1; 1, 10, 6, 2, 2, 6, 10, 1; 1, 12, 8, 4, 0, 4, 8, 12, 1; 1, 14, 10, 6, 2, 2, 6, 10, 14, 1; 1, 16, 12, 8, 4, 0, 4, 8, 12, 16, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
T:= func< n,k,q | k eq 0 or k eq n select 1 else q*Abs( (n-k)^(q-1) - k^(q-1) ) >; [T(n,k,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 13 2021
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, m*Abs[(n-k)^(m-1) - k^(m-1)]]; Table[T[n,k,2], {n,0,15}, {k,0,n}]//Flatten
-
Sage
def A157684(n,k,q): return 1 if (k==0 or k==n) else q*abs((n-k)^(q-1) - k^(q-1)) flatten([[A157684(n,k,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 13 2021
Formula
T(n, k, m) = 1 if k = 0 or k = n, otherwise m*abs( (n-k)^(m-1) - k^(m-1) ), with m = 2.
From G. C. Greubel, Dec 13 2021: (Start)
Sum_{k=0..n} T(n, k, 2) = (-1)*[n==0] + A244800(n-1).
T(2*n, n, 2) = A000007(n). (End)
Extensions
Edited by G. C. Greubel, Dec 13 2021
Comments