A157704 G.f.s of the z^p coefficients of the polynomials in the GF3 denominators of A156927.
1, 1, 5, 32, 186, 132, 10, 56, 2814, 17834, 27324, 11364, 1078, 10, 48, 17988, 494720, 3324209, 7526484, 6382271, 2004296, 203799, 4580, 5, 16, 72210, 7108338, 146595355, 1025458635, 2957655028, 3828236468
Offset: 0
Examples
Some PDGF3 (z;n) are: PDGF3(z;n=3) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10 PDGF3(z;n=4) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10*(1-5*z)^13 The first few GFKT3's are: GFKT3(z;p=0) = 1/(1-z) GFKT3(z;p=1) = -(5*z+1)/(1-z)^4 GFKT3(z;p=2) = z*(32+186*z+132*z^2+10*z^3)/(1-z)^7 Some KT3(z,p) polynomials are: KT3(z;p=2) = 32+186*z+132*z^2+10*z^3 KT3(z;p=3) = 56+2814*z+17834*z^2+27324*z^3+11364*z^4+1078*z^5+10*z^6
Crossrefs
Programs
-
Maple
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(k+1)*z)^(1+3*k), k=0..n2): a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT3(p):=sum((fk)*z^k, k=0..infinity); q3:=ldegree((numer(GFKT3(p)))): KT3(p):=sort((-1)^(p)*simplify((GFKT3(p)*(1-z)^(3*p+1))/z^q3),z, ascending);
Formula
PDGF3(z;n) = Product_{k=0..n} (1-(k+1)*z)^(1+3*k) with n = 1, 2, 3, ...
GFKT3(z;p) = (-1)^(p)*(z^q3)*KT3(z, p)/(1-z)^(3*p+1) with p = 0, 1, 2, ...
The recurrence relation for the z^p coefficients a(n) is a(n) = Sum_{k=1..3*p+1} (-1)^(k+1)*binomial(3*p + 1, k)*a(n-k) with p = 0, 1, 2, ... .
Comments