A002414
Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.
Original entry on oeis.org
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, 1386, 1794, 2275, 2835, 3480, 4216, 5049, 5985, 7030, 8190, 9471, 10879, 12420, 14100, 15925, 17901, 20034, 22330, 24795, 27435, 30256, 33264, 36465, 39865, 43470, 47286, 51319, 55575, 60060, 64780
Offset: 1
a(2) = 9 since there are 9 ways to cover a 4 X 4 lattice with 8 dominoes, 2 of which is horizontal and the other 6 are vertical. - Yong Kong (ykong@curagen.com), May 06 2000
G.f. = x + 9*x^2 + 30*x^3 + 70*x^4 + 135*x^5 + 231*x^6 + 364*x^7 + 540*x^8 + 765*x^9 + ...
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- B. Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672.
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to dominoes
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf. similar sequences listed in
A237616.
Cf.
A260234 (largest prime factor of a(n+1)).
-
[n*(n+1)*(2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, May 24 2016
-
A002414 := n-> 1/2*n*(n+1)*(2*n-1): seq(A002414(n), n=1..100);
-
LinearRecurrence[{4,-6,4,-1},{1,9,30,70},40] (* Harvey P. Dale, Apr 12 2013 *)
-
{a(n) = (2*n - 1) * n * (n + 1) / 2} \\ Michael Somos, Mar 17 2011
More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000
Incorrect formula deleted by
Ant King, Oct 04 2012
A156927
FP3 polynomials related to the generating functions of the columns of the A156921 matrix.
Original entry on oeis.org
1, 1, 1, -6, 29, 31, -283, 245, 298, -286, -108, 119, -3106, 29469, -104585, -220481, 3601363, -15487305, 34949165, -39821950, 4356011, 46881744, -51274736, 9005908, 14663472, -5205168, -1456704, -20736
Offset: 0
The first few rows of the "triangle" of the FP3(z,m) coefficients are:
[1]
[1, 1]
[-6, 29, 31, -283, 245, 298, -286, -108]
The first few FP3 polynomials are:
FP3(z; m=0) = 1
FP3(z; m=1) = (1+z)
FP3(z; m=2) = (-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)
Some GF3(z;m) are:
GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z))
GF3(z;m=2) = z^2*(-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)/((1-z)^7*(1-2*z)^4*(1-3*z))
For the polynomials in the denominators of the GF3(z;m) see
A157704.
A064350
a(n) = (3*n)!/n!.
Original entry on oeis.org
1, 6, 360, 60480, 19958400, 10897286400, 8892185702400, 10137091700736000, 15388105201717248000, 30006805143348633600000, 73096577329197271449600000, 217535414131691079834009600000, 776601428450137155007414272000000, 3275704825202678519821273399296000000
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..70
- Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
-
Table[(3n)!/n!,{n,0,20}] (* Geoffrey Critzer, Dec 30 2012 *)
-
{ t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ Harry J. Smith, Sep 12 2009
A157705
G.f.s of the z^p coefficients of the polynomials in the GF4 denominators of A156933.
Original entry on oeis.org
1, 1, 3, 2, 18, 128, 171, 42, 1, 22, 1348, 11738, 26293, 17693, 3271, 115, 13, 6122, 228986, 2070813, 6324083, 7397855, 3361536, 544247, 24590, 155, 3, 17248, 2413434, 67035224, 612026240, 2274148882
Offset: 0
Some PDGF4 (z;n) are:
PDGF4(z; n=3) = (1-7*z)*(1-5*z)^4*(1-3*z)^7*(1-z)^10
PDGF4(z; n=4) = (1-9*z)*(1-7*z)^4*(1-5*z)^7*(1-3*z)^10*(1-z)^13
The first few GFKT4's are:
GFKT4(z;p=0) = 1/(1-z)
GFKT4(z;p=1) = -(1+3*z+2*z^2)/(1-z)^4
GFKT4(z;p=2) = z*(18+128*z+171*z^2+42*z^3+z^4)/(1-z)^7
Some KT4(z,p) polynomials are:
KT4(z;p=2) = 18+128*z+171*z^2+42*z^3+z^4
KT4(z;p=3) = 22+1348*z+11738*z^2+26293*z^3+17693*z^4+3271*z^5+115*z^6
See
A081436 for the z^1 coefficients and
A157708 for the z^2 coefficients.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*n2+1-(2*k))*z)^(3*k+1), k=0..n2): a(n2):= coeff(fz(n2),z,p): end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)= sort (simplify(fk)); GFKT4(p):=sum((fk)*z^k,k=0..infinity); q4:=ldegree((numer (GFKT4(p)))): KT4(p):=sort((-1)^(p)*simplify((GFKT4(p)*(1-z)^(3*p+1))/z^q4),z, ascending);
A157702
G.f.s of the z^p coefficients of the polynomials in the GF1 denominators of A156921.
Original entry on oeis.org
1, 1, 1, 7, 26, 7, 3, 166, 951, 951, 166, 3, 263, 8999, 59637, 108602, 59637, 8999, 263, 174, 33124, 848555, 6062651, 15477896, 15477896, 6062651, 848555, 33124, 174, 45, 66963, 5856626, 122966782, 920090513
Offset: 0
Some PDGF1 (z;n) are:
PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3
PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
The first few GFKT1's are:
GFKT1(z;p=0) = 1/(1-z)
GFKT1(z;p=1) = -z*(1+z)/(1-z)^4
GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7
Some KT1(z;p) polynomials are:
KT1(z;p=2) = 7+26*z+7*z^2
KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5
KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
See
A000330 for the z^1 coefficients and
A157706 for the z^2 coefficients.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m),m=1..n2); a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k,k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1),z, ascending);
A157703
G.f.s of the z^p coefficients of the polynomials in the GF2 denominators of A156925.
Original entry on oeis.org
1, 1, 5, 5, 2, 62, 152, 62, 2, 91, 1652, 5957, 5957, 1652, 91, 52, 5240, 77630, 342188, 551180, 342188, 77630, 5240, 52, 12, 8549, 424921, 5629615, 28123559, 61108544, 61108544, 28123559, 5629615, 424921, 8549, 12
Offset: 0
Some PDGF2 (z;n) are:
PDGF2(z;n=3) = (1-z)^3*(1-2*z)^2*(1-3*z)
PDGF2(z;n=4) = (1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z)
The first few GFKT2's are:
GFKT2(z;p=0) = 1/(1-z)
GFKT2(z;p=1) = -z/(z-1)^4
GFKT2(z;p=2) = z^2*(5+5*z)/(1-z)^7
Some KT2(z,p) polynomials are:
KT2(z;p=2) = 5+5*z
KT2(z;p=3) = 2+62*z+152*z^2+62*z^3+2*z^4
KT2(z;p=4) = 91+1652*z+5957*z^2+5957*z^3+1652*z^4+91*z^5
See
A000292 for the z^1 coefficients and
A040977 for the z^2 coefficients divided by 5.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-m*z)^(n2+1-m),m=1..n2): a(n2):= coeff(fz(n2),z,p): end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT2(p):=sum((fk)*z^k,k=0..infinity); q2:=ldegree((numer(GFKT2(p)))): KT2(p):=sort((-1)^p*simplify((GFKT2(p)*(1-z)^(3*p+1))/z^q2),z, ascending);
A001525
a(n) = (3n)!/(3!n!).
Original entry on oeis.org
1, 60, 10080, 3326400, 1816214400, 1482030950400, 1689515283456000, 2564684200286208000, 5001134190558105600000, 12182762888199545241600000, 36255902355281846639001600000, 129433571408356192501235712000000, 545950804200446419970212233216000000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A157707
The z^2 coefficients of the polynomials in the GF3 denominators of A156927 divided by 2.
Original entry on oeis.org
16, 205, 1165, 4415, 13055, 32606, 72030, 144930, 270930, 477235, 800371, 1288105, 2001545, 3017420, 4430540, 6356436, 8934180, 12329385, 16737385, 22386595, 29542051, 38509130, 49637450, 63324950
Offset: 1
-
nmax:=24; for n from 0 to nmax do fz(n):=product((1-(k+1)*z)^(1+3*k),k=0..n); c(n):= coeff(fz(n),z,2)/2; end do: a:=n-> c(n): seq(a(n), n=1..nmax);
Showing 1-8 of 8 results.
Comments