A081436
Fifth subdiagonal in array of n-gonal numbers A081422.
Original entry on oeis.org
1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Christian Barrientos, The number of spanning trees of cyclic snakes, Indones. J. Comb. (2025) Vol. 9, No. 1, 21-30. See p. 29.
- J. A. Dias da Silva and Pedro J. Freitas, Counting Spectral Radii of Matrices with Positive Entries, arXiv:1305.1139 [math.CO], 2013.
- Theorem of the Day, Lovász Local Lemma example involving intersecting pairs of multisets
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..40], n-> (n+1)*(2*(n+1)^2-n)/2); # G. C. Greubel, Aug 14 2019
-
[(2*n^3+5*n^2+5*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
A081436 := proc(n)
(n+1)*(2*n^2+3*n+2)/2 ;
end proc:
seq(A081436(n),n=0..60) ; # R. J. Mathar, Jun 26 2013
-
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 24, 58}, 40] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=n^3+5/2*n*(n+1)+1 \\ Charles R Greathouse IV, Jun 20 2013
-
[(n+1)*(2*(n+1)^2-n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
A156933
FP4 polynomials related to the o.g.f.s of the columns of the A156925 matrix.
Original entry on oeis.org
1, 1, 1, -11, 156, -627, 736, 591, -1116, -369, -6, 106, -2772, 76070, -1087552, 8632650, -40358780, 106452214, -99774996, -284430514, 1125952500, -1581820542, 737716032, 414532350, -357790500, -81870750, -1275750
Offset: 0
The first few rows of the "triangle" of the FP4(z;m) coefficients are:
[1]
[1, 1]
[ -11, 156, -627, 736, 591, -1116, -369]
The first few FP4 polynomials are:
FP4(z; m=0) = 1
FP4(z; m=1) = (1+z)
FP4(z; m=2) = ( -11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6 )
Some GF4(z;m) are:
GF4(z;m=1) = z*(1+z)/((1-3*z)*(1-z)^4)
GF4(z;m=2) = z^2*(-11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6)/((1-z)^7*(1-3*z)^4*(1-5*z))
A064350
a(n) = (3*n)!/n!.
Original entry on oeis.org
1, 6, 360, 60480, 19958400, 10897286400, 8892185702400, 10137091700736000, 15388105201717248000, 30006805143348633600000, 73096577329197271449600000, 217535414131691079834009600000, 776601428450137155007414272000000, 3275704825202678519821273399296000000
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..70
- Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
-
Table[(3n)!/n!,{n,0,20}] (* Geoffrey Critzer, Dec 30 2012 *)
-
{ t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ Harry J. Smith, Sep 12 2009
A157704
G.f.s of the z^p coefficients of the polynomials in the GF3 denominators of A156927.
Original entry on oeis.org
1, 1, 5, 32, 186, 132, 10, 56, 2814, 17834, 27324, 11364, 1078, 10, 48, 17988, 494720, 3324209, 7526484, 6382271, 2004296, 203799, 4580, 5, 16, 72210, 7108338, 146595355, 1025458635, 2957655028, 3828236468
Offset: 0
Some PDGF3 (z;n) are:
PDGF3(z;n=3) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10
PDGF3(z;n=4) = (1-z)*(1-2*z)^4*(1-3*z)^7*(1-4*z)^10*(1-5*z)^13
The first few GFKT3's are:
GFKT3(z;p=0) = 1/(1-z)
GFKT3(z;p=1) = -(5*z+1)/(1-z)^4
GFKT3(z;p=2) = z*(32+186*z+132*z^2+10*z^3)/(1-z)^7
Some KT3(z,p) polynomials are:
KT3(z;p=2) = 32+186*z+132*z^2+10*z^3
KT3(z;p=3) = 56+2814*z+17834*z^2+27324*z^3+11364*z^4+1078*z^5+10*z^6
See
A002414 for the z^1 coefficients and
A157707 for the z^2 coefficients divided by 2.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(k+1)*z)^(1+3*k), k=0..n2): a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT3(p):=sum((fk)*z^k, k=0..infinity); q3:=ldegree((numer(GFKT3(p)))): KT3(p):=sort((-1)^(p)*simplify((GFKT3(p)*(1-z)^(3*p+1))/z^q3),z, ascending);
A157702
G.f.s of the z^p coefficients of the polynomials in the GF1 denominators of A156921.
Original entry on oeis.org
1, 1, 1, 7, 26, 7, 3, 166, 951, 951, 166, 3, 263, 8999, 59637, 108602, 59637, 8999, 263, 174, 33124, 848555, 6062651, 15477896, 15477896, 6062651, 848555, 33124, 174, 45, 66963, 5856626, 122966782, 920090513
Offset: 0
Some PDGF1 (z;n) are:
PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3
PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
The first few GFKT1's are:
GFKT1(z;p=0) = 1/(1-z)
GFKT1(z;p=1) = -z*(1+z)/(1-z)^4
GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7
Some KT1(z;p) polynomials are:
KT1(z;p=2) = 7+26*z+7*z^2
KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5
KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
See
A000330 for the z^1 coefficients and
A157706 for the z^2 coefficients.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m),m=1..n2); a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k,k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1),z, ascending);
A157703
G.f.s of the z^p coefficients of the polynomials in the GF2 denominators of A156925.
Original entry on oeis.org
1, 1, 5, 5, 2, 62, 152, 62, 2, 91, 1652, 5957, 5957, 1652, 91, 52, 5240, 77630, 342188, 551180, 342188, 77630, 5240, 52, 12, 8549, 424921, 5629615, 28123559, 61108544, 61108544, 28123559, 5629615, 424921, 8549, 12
Offset: 0
Some PDGF2 (z;n) are:
PDGF2(z;n=3) = (1-z)^3*(1-2*z)^2*(1-3*z)
PDGF2(z;n=4) = (1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z)
The first few GFKT2's are:
GFKT2(z;p=0) = 1/(1-z)
GFKT2(z;p=1) = -z/(z-1)^4
GFKT2(z;p=2) = z^2*(5+5*z)/(1-z)^7
Some KT2(z,p) polynomials are:
KT2(z;p=2) = 5+5*z
KT2(z;p=3) = 2+62*z+152*z^2+62*z^3+2*z^4
KT2(z;p=4) = 91+1652*z+5957*z^2+5957*z^3+1652*z^4+91*z^5
See
A000292 for the z^1 coefficients and
A040977 for the z^2 coefficients divided by 5.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-m*z)^(n2+1-m),m=1..n2): a(n2):= coeff(fz(n2),z,p): end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT2(p):=sum((fk)*z^k,k=0..infinity); q2:=ldegree((numer(GFKT2(p)))): KT2(p):=sort((-1)^p*simplify((GFKT2(p)*(1-z)^(3*p+1))/z^q2),z, ascending);
A001525
a(n) = (3n)!/(3!n!).
Original entry on oeis.org
1, 60, 10080, 3326400, 1816214400, 1482030950400, 1689515283456000, 2564684200286208000, 5001134190558105600000, 12182762888199545241600000, 36255902355281846639001600000, 129433571408356192501235712000000, 545950804200446419970212233216000000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A157708
The z^2 coefficients of the polynomials in the GF4 denominators of A156933.
Original entry on oeis.org
18, 254, 1571, 6335, 19615, 50743, 115234, 237066, 451320, 807180, 1371293, 2231489, 3500861, 5322205, 7872820, 11369668, 16074894, 22301706, 30420615, 40866035, 54143243, 70835699, 91612726
Offset: 1
-
nmax:=23; for n from 0 to nmax do fz(n):=product((1-(2*n+1-2*k)*z)^(3*k+1), k=0..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=1..nmax);
Showing 1-8 of 8 results.
Comments