cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157705 G.f.s of the z^p coefficients of the polynomials in the GF4 denominators of A156933.

Original entry on oeis.org

1, 1, 3, 2, 18, 128, 171, 42, 1, 22, 1348, 11738, 26293, 17693, 3271, 115, 13, 6122, 228986, 2070813, 6324083, 7397855, 3361536, 544247, 24590, 155, 3, 17248, 2413434, 67035224, 612026240, 2274148882
Offset: 0

Views

Author

Johannes W. Meijer, Mar 07 2009

Keywords

Comments

The formula for the PDGF4(z;n) polynomials in the GF4 denominators of A156933 can be found below.
The general structure of the GFKT4(z;p) that generate the z^p coefficients of the PDGF4(z;n) polynomials can also be found below. The KT4(z;p) polynomials in the numerators of the GFKT4(z;p) have a nice symmetrical structure.
The sequence of the number of terms of the first few KT4(z;p) polynomials is 1, 3, 5, 7, 10, 13, 15, 18, 20, 23, 26, 29, 32, 34, 37, 40, 42. The differences of this sequence and that of the number of terms of the KT3(z;p), see A157704, follow a simple pattern.
A Maple algorithm that generates relevant GFKT4(z;p) information can be found below.

Examples

			Some PDGF4 (z;n) are:
  PDGF4(z; n=3) = (1-7*z)*(1-5*z)^4*(1-3*z)^7*(1-z)^10
  PDGF4(z; n=4) = (1-9*z)*(1-7*z)^4*(1-5*z)^7*(1-3*z)^10*(1-z)^13
The first few GFKT4's are:
  GFKT4(z;p=0) = 1/(1-z)
  GFKT4(z;p=1) = -(1+3*z+2*z^2)/(1-z)^4
  GFKT4(z;p=2) = z*(18+128*z+171*z^2+42*z^3+z^4)/(1-z)^7
Some KT4(z,p) polynomials are:
  KT4(z;p=2) = 18+128*z+171*z^2+42*z^3+z^4
  KT4(z;p=3) = 22+1348*z+11738*z^2+26293*z^3+17693*z^4+3271*z^5+115*z^6
		

Crossrefs

Originator sequence A156933.
See A081436 for the z^1 coefficients and A157708 for the z^2 coefficients.
Row sums equal A064350 and those of A157704.

Programs

  • Maple
    p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*n2+1-(2*k))*z)^(3*k+1), k=0..n2): a(n2):= coeff(fz(n2),z,p): end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)= sort (simplify(fk)); GFKT4(p):=sum((fk)*z^k,k=0..infinity); q4:=ldegree((numer (GFKT4(p)))): KT4(p):=sort((-1)^(p)*simplify((GFKT4(p)*(1-z)^(3*p+1))/z^q4),z, ascending);

Formula

PDGF4(z;n) = Product_{k=0..n} (1-(2*n+1-2*k)*z)^(3*k+1) with n = 1, 2, 3, ...
GFKT4(z;p) = (-1)^(p)*(z^q4)*KT4(z, p)/(1-z)^(3*p+1) with p = 0, 1, 2, ...
The recurrence relation for the z^p coefficients a(n) is a(n) = Sum_{k=1..3*p+1} (-1)^(k+1)*binomial(3*p + 1, k)*a(n-k) with p = 0, 1, 2, ... .