Original entry on oeis.org
447914738, 5726413266646343, 52858423703753671390658, 932521283899305953765183, 10051725785115560870423121293, 55198768937767543284962316423143, 668989466176542077234982864850425170016849023265359023043369141048723978
Offset: 1
A280002
Integers n such that A157752 (n) are primes.
Original entry on oeis.org
1, 5, 10, 23, 30, 267
Offset: 1
A268491
Array T(n,k) = least integer congruent to prime(i) mod prime(i+1) for all k <= i <= k+n; n, k >= 1; read by upward diagonals.
Original entry on oeis.org
2, 8, 3, 68, 33, 5, 1118, 348, 40, 7, 2273, 2273, 271, 128, 11, 197468, 27298, 10281, 557, 115, 13, 1728998, 112383, 112383, 20005, 3209, 302, 17, 1728998, 1728998, 1728998, 666651, 87189, 5470, 226, 19, 447914738, 447914738, 16601856, 16601856, 2598191
Offset: 1
The array reads: (See the original post on the SeqFan list for more data.)
n\k: 1 2 3 4 5 6 7 8
1 2, 3, 5, 7, 11, 13, 17, 19, ...
2 8, 33, 40, 128, 115, 302, 226, 226, ...
3 68, 348, 271, 557, 3209, 5470, 226, 6229, ...
4 1118, 2273, 10281, 20005, 87189, 12899, 88937, 709247 ...
5 2273, 27298, 112383, 666651, 2598191, 874663, 9124786, 3004394 ...
6 197468, 112383, 1728998, 16601856, 81018715, 154484096, 285307475, 34371403...
-
T := proc(n,k)
local lrem,leval,i ;
lrem := [] ;
leval := [] ;
for i from k to n+k-1 do
lrem := [op(lrem),ithprime(i+1)] ;
leval := [op(leval),ithprime(i)] ;
end do:
chrem(leval,lrem) ;
end proc:
seq(seq(T(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, Apr 14 2016
-
T(n,k)=lift(chinese(vector(n,i,Mod(prime(k+i-1),prime(k+i)))))
concat(vector(10,n,vector(n,j, T(n-j+1,j))))
Showing 1-3 of 3 results.
Comments