A157783 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0
Examples
Triangle begins 1; 1, -1; 3, -4, 1; 27, -39, 13, -1; 729, -1080, 390, -40, 1; 59049, -88209, 32670, -3630, 121, -1; 14348907, -21493836, 8027019, -914760, 33033, -364, 1; 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1; 22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1; Row n=3 is 27 - 39*x + 13*x^2 - x^3.
Crossrefs
Programs
-
Maple
A157783 := proc(n,k) product( 3^(i-1)-x,i=1..n) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Oct 15 2013
-
Mathematica
Clear[f, q, M, n, m]; q = 3; f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]]; M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}]; Table[M[n], {n, 1, 10}]; Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]]; a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]]; Flatten[a]
Comments