cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157783 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Row sums except n=0 are zero.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - Philippe Deléham, Mar 09 2009

Examples

			Triangle begins
  1;
  1, -1;
  3, -4, 1;
  27, -39, 13, -1;
  729, -1080, 390, -40, 1;
  59049, -88209, 32670, -3630, 121, -1;
  14348907, -21493836, 8027019, -914760, 33033, -364, 1;
  10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
  22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
		

Crossrefs

Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).

Programs

  • Maple
    A157783 := proc(n,k)
        product( 3^(i-1)-x,i=1..n) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Oct 15 2013
  • Mathematica
    Clear[f, q, M, n, m];
    q = 3;
    f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
    M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
    Table[M[n], {n, 1, 10}];
    Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
    a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
    Flatten[a]