A157785 Triangle of coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2.
1, 1, -1, -2, 1, 1, -8, 6, 3, -1, 64, -40, -30, 5, 1, 1024, -704, -440, 110, 11, -1, -32768, 21504, 14784, -3080, -462, 21, 1, -2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1, 268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1
Offset: 0
Examples
Triangle begins as: 1; 1, -1; -2, 1, 1; -8, 6, 3, -1; 64, -40, -30, 5, 1; 1024, -704, -440, 110, 11, -1; -32768, 21504, 14784, -3080, -462, 21, 1; -2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1; 268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
p[x_, n_, q_]:= q^Binomial[n, 2]*QPochhammer[x, 1/q, n]; Table[CoefficientList[Series[p[x, n, -2], {x,0,n}], x], {n,0,10}]//Flatten (* G. C. Greubel, Nov 29 2021 *)
Formula
Sum_{k=0..n} T(n, k) = 0^n.
From G. C. Greubel, Nov 29 2021: (Start)
T(n, k) = [x^k] coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2.
T(n, k) = [x^k] Product_{j=0..n-1} (q^j - x). (End)
Extensions
Edited by G. C. Greubel, Nov 29 2021
Comments