cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157805 Numerator of Euler(n,3).

Original entry on oeis.org

1, 5, 6, 55, 30, 125, 126, 2015, 510, 2075, 2046, 15685, 8190, 38225, 32766, 118975, 131070, 3726575, 524286, -217736285, 2097150, 4730505125, 8388606, -968249463115, 33554430, 14717801331875, 134217726, -2093659805510855, 536870910, 86125674710684825
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2009

Keywords

Examples

			By the formula, we have a(1) = 2*2 + 1 = 5, a(3) = 14*4 - 1 = 55, a(5) = 62*2 + 1 = 125, a(7) = 254*8 - 17 = 2015, a(9) = 1022*2 + 31 = 2075, etc. - _Vladimir Shevelev_, Sep 04 2017
		

Crossrefs

For denominators see A006519.
Cf. A002425.

Programs

  • Mathematica
    a2425[n_] := (-1)^n/n*(1 - 4^n)*BernoulliB[2*n]*2^IntegerExponent[2*n, 2];
    a6519[n_] := 2^IntegerExponent[n, 2];
    a[n_] := Switch[Mod[n, 4], 0 | 2, 2^(n + 1) - 2 + KroneckerDelta[n, 0], 1, (2^(n + 1) - 2)*a6519[n + 1] + a2425[(n + 1)/2], 3, (2^(n + 1) - 2)*a6519[n + 1] - a2425[(n + 1)/2]];
    Table[a[n], {n, 0, 30}]
    (* or *)
    Table[EulerE[n, 3] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)

Formula

From Vladimir Shevelev, Sep 04 2017: (Start)
For even n, a(n) = 2^(n+1) - 2 + delta(n,0), where delta is the Kronecker symbol; for n == 1 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) + A002425((n+1)/2); for n == 3 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) - A002425((n+1)/2).
A generalization: Let N(n,k) denote numerator of Euler(n,k), k >= 1 is an integer. Set u(n,k) = 2*Sum_{1 <= i <= k-1}(-1)^(i-1)*(k-i)^n. Then, for even n, N(n,k) = u(n,k) + (-1)^(k-1)^delta(n,0); for n == 1 (mod 4), N(n,k) = u(n,k)*A006519(n+1) + (-1)^(k-1)*A002425((n+1)/2); for n == 3 (mod 4), N(n,k) = u(n,k)* A006519 (n+1) - (-1)^(k-1)*A002425((n+1)/2). (End)