cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291897 Numerator of E(2*n-1,n), where E(n,x) is the Euler polynomial.

Original entry on oeis.org

1, 9, 125, 32977, 971919, 358472059, 47622059953, 137818710619425, 8141400285401267, 9740358918723188381, 3597069206174040366021, 12859671622917809034800123, 3419734700063005545155284375, 8538628250545609672426471056711, 6181704419438256867205044161777369
Offset: 1

Views

Author

Vladimir Shevelev, Sep 22 2017

Keywords

Comments

Conjecture: a(n) is divisible by (2*n-1)^2.
Robert G. Wilson v verified this conjecture up to 5000.
Note that sometimes a(n) is divisible by (2n-1)^3, for example, for n = 1,3,7,9,... when 2*n-1 = 1,5,13,17,... .

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Programs

  • Maple
    A291897 := n -> euler(2*n-1, n)*2^(padic[ordp](2*n, 2)):
    seq(A291897(n), n=1..15); # Peter Luschny, Sep 22 2017
  • Mathematica
    f[n_] := Numerator@ EulerE[2 n - 1, n]; Array[f, 15] (* Robert G. Wilson v, Sep 22 2017 *)
    Table[2^IntegerExponent[2n, 2] EulerE[2 n-1, n], {n,1,15}] (* Peter Luschny, Sep 22 2017 *)
  • PARI
    a(n) = numerator(subst(eulerpol(2*n-1, 'x), 'x, n)); \\ Michel Marcus, Sep 21 2021
    
  • Python
    from sympy import euler
    def A291897(n): return euler((n<<1)-1,n).p # Chai Wah Wu, Jul 07 2022

Formula

a(n) = (E(2*n-1,n) + (-1)^(n-1)*E(2*n-1,0))*A006519(2*n) + A002425(n).
a(n) = 2*(-1)^n*A292706(n)*A006519(2*n) + A002425(n).
a(n) = E(2*n-1, n)*2^A007814(2*n). - Peter Luschny, Sep 22 2017

Extensions

More terms from Peter J. C. Moses, Sep 22 2017

A143074 Numerator of Euler(n,2).

Original entry on oeis.org

1, 3, 2, 9, 2, 3, 2, 33, 2, -27, 2, 699, 2, -5457, 2, 929601, 2, -3202287, 2, 221930589, 2, -4722116517, 2, 968383680843, 2, -14717667114147, 2, 2093660879252679, 2, -86125672563201177, 2, 129848163681107302017, 2, -868320396104950823607, 2, 209390615747646519456969
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2009

Keywords

Examples

			By the formula, we have a(1) = 2*2 - 1 = 3, a(3) = 2*4 + 1 = 9, a(5) = 2*2 - 1 = 3, a(7) = 2*8 + 17 = 33, a(9) = 2*2 - 31 = -27, etc. - _Vladimir Shevelev_, Sep 04 2017
		

Crossrefs

Programs

Formula

For even n, a(n) = 2 - delta(n,0), where delta is the Kronecker symbol;
for n==1 (mod 4), a(n) = 2*A006519(n+1) - A002425((n+1)/2);
for n==3 (mod 4), a(n) = 2*A006519(n+1) + A002425((n+1)/2). - Vladimir Shevelev, Sep 04 2017

A292706 a(n) = 1/2*((-1)^n*E(2*n-1,n) - E(2*n-1,0)), where E(n,x) is the Euler polynomial.

Original entry on oeis.org

0, 1, -31, 2060, -242972, 44808921, -11905513623, 4306834677808, -2035350070549744, 1217544864812657225, -899267301542329562375, 803729476432302540694956, -854933675015747706872042556, 1067328531318200947345698975505, -1545426104859564195269842899644047
Offset: 1

Views

Author

Vladimir Shevelev, Sep 21 2017

Keywords

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Programs

  • Mathematica
    Table[((-1)^n EulerE[2n-1,n]-EulerE[2n-1,0])/2,{n,10}]
    Map[Total[(Map[(-1)^# (#-1)&,Range[#]])^(2#-1)]&,Range[10]]
    (* Peter J. C. Moses, Sep 21 2017 *)
  • PARI
    a(n) = sum(k=1, n-1, (-1)^(k+1)*k^(2*n-1)); \\ Michel Marcus, Sep 22 2017

Formula

a(n) = 1^(2*n-1) - 2^(2*n-1) + ... + (-1)^n*(n-1)^(2*n-1).
|a(n)| ~ 1/(1+e^(-2))*(n-1)^(2*n-1) = 0.88079707...*(n-1)^(2*n-1) as n goes to infinity.

Extensions

More terms from Peter J. C. Moses, Sep 21 2017
Showing 1-3 of 3 results.