A060096 Numerator of coefficients of Euler polynomials (rising powers).
1, -1, 1, 0, -1, 1, 1, 0, -3, 1, 0, 1, 0, -2, 1, -1, 0, 5, 0, -5, 1, 0, -3, 0, 5, 0, -3, 1, 17, 0, -21, 0, 35, 0, -7, 1, 0, 17, 0, -28, 0, 14, 0, -4, 1, -31, 0, 153, 0, -63, 0, 21, 0, -9, 1, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1, 691, 0, -1705, 0, 2805, 0, -231, 0, 165, 0, -11, 1, 0, 2073, 0, -3410, 0, 1683, 0, -396
Offset: 0
Examples
n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: -1 1 2: 0 -1 1 3: 1 0 -3 1 4: 0 1 0 -2 1 5: -1 0 5 0 -5 1 6: 0 -3 0 5 0 -3 1 7: 17 0 -21 0 35 0 -7 1 8: 0 17 0 -28 0 14 0 -4 1 ... The rational triangle a(n,m)/A060097(n,m) starts n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: -1/2 1 2: 0 -1 1 3: 1/4 0 -3/2 1 4: 0 1 0 -2 1 5: -1/2 0 5/2 0 -5/2 1 6: 0 -3 0 5 0 -3 1 7: 17/8 0 -21/2 0 35/4 0 -7/2 1 8: 0 17 0 -28 0 14 0 -4 1 ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 20, equations 20:4:1 - 20:4:8 at pages 177-178.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Cf. A060097.
Programs
-
Maple
A060096 := proc(n,m) coeff(euler(n,x),x,m) ; numer(%) ;end proc: seq(seq(A060096(n,m),m=0..n),n=0..12) ; # R. J. Mathar, Dec 21 2010
-
Mathematica
Numerator[Flatten[Table[CoefficientList[EulerE[n, x], x], {n, 0, 12}]]] (* Jean-François Alcover, Apr 29 2011 *)
Formula
E(n, x)= sum((a(n, m)/b(n, m))*x^m, m=0..n), denominators b(n, m)= A060097(n, m).
From Wolfdieter Lang, Oct 31 2011: (Start)
E.g.f. for E(n, x) is 2*exp(x*z)/(exp(z)+1).
E.g.f. of column no. m, m>=0, is 2*x^{m+1}/(m!*(exp(x)+1)).
Recurrences for E(n,m):=a(n,m)/A060097(n,m) from the Sheffer a-and z-sequence:
E(n,m)=(n/m)*E(n-1,m-1), n>=1,m>=1.
E(n,0)=-n*sum(E(n-1,j)/(2*(j+1)),j=0..n-1), n>=1, E(0,0)=1.
(see the Sheffer comments above).
(End)
E(n,m) = binomial(n,m)*sum(((-1)^j)*j!*S2(n-m,j)/2^j ,j=0..n-m), 0<=m<=n, with S2 given by A008277. From S. Roman, The umbral calculus, reference under A048854, eq. (4.2.10), p. 101, with a=1, and a misprint corrected: replace 1/k! by binomial(n,k) (also in the two preceding formulas). - Wolfdieter Lang, Nov 03 2011
The first (m=0) column of the rational triangle is conjectured to be E(n,0) = ((-1)^n)*A198631(n) / A006519(n+1). See also the first column shown in A209308 (different signs). - Wolfdieter Lang, Jun 15 2015
Extensions
Table rewritten by Wolfdieter Lang, Oct 31 2011
Comments