cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A198631 Numerators of the rational sequence with e.g.f. 1/(1+exp(-x)).

Original entry on oeis.org

1, 1, 0, -1, 0, 1, 0, -17, 0, 31, 0, -691, 0, 5461, 0, -929569, 0, 3202291, 0, -221930581, 0, 4722116521, 0, -968383680827, 0, 14717667114151, 0, -2093660879252671, 0, 86125672563201181, 0, -129848163681107301953, 0, 868320396104950823611, 0
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2011

Keywords

Comments

Numerators of the row sums of the Euler triangle A060096/A060097.
The corresponding denominator sequence looks like 2*A006519(n+1) when n is odd.
Also numerator of the value at the origin of the n-th derivative of the standard logistic function. - Enrique Pérez Herrero, Feb 15 2016

Examples

			The rational sequence r(n) = a(n) / A006519(n+1) starts:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, -691/4, 0, 5461/2, 0, -929569/16, 0, 3202291/2, 0, -221930581/4, 0, 4722116521/2, 0, -968383680827/8, 0, 14717667114151/2, 0, -2093660879252671/4, ...
		

Crossrefs

Programs

  • Maple
    seq(denom(euler(i,x))*euler(i,1),i=0..33); # Peter Luschny, Jun 16 2012
  • Mathematica
    Join[{1},Table[Numerator[EulerE[n,1]/(2^n-1)], {n, 34}]] (* Peter Luschny, Jul 14 2013 *)
  • Sage
    def A198631_list(n):
        x = var('x')
        s = (1/(1+exp(-x))).series(x,n+2)
        return [(factorial(i)*s.coefficient(x,i)).numerator() for i in (0..n)]
    A198631_list(34) # Peter Luschny, Jul 12 2012
    
  • Sage
    # Alternatively:
    def A198631_list(len):
        e, f, R, C = 2, 1, [], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k+1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append(numerator((e-1)*f*C[0]))
            f *= n; e <<= 1
        return R
    print(A198631_list(36)) # Peter Luschny, Feb 21 2016

Formula

a(n) = numerator(sum(E(n,m),m=0..n)), n>=0, with the Euler triangle E(n,m)=A060096(n,m)/A060097(n,m).
E.g.f.: 2/(1+exp(-x)) (see a comment in A060096).
r(n) := sum(E(n,m),m=0..n) = ((-1)^n)*sum(((-1)^m)*m!*S2(n,m)/2^m, m=0..n), n>=0, where S2 are the Stirling numbers of the second kind A048993. From the e.g.f. with y=exp(-x), dx=-y*dy, putting y=1 at the end. - Wolfdieter Lang, Nov 03 2011
a(n) = numerator(euler(n,1)/(2^n-1)) for n > 0. - Peter Luschny, Jul 14 2013
a(n) = numerator(2*(2^n-1)*B(n,1)/n) for n > 0, B(n,x) the Bernoulli polynomials. - Peter Luschny, May 24 2014
Numerators of the Taylor series coefficients 4*(2^(n+1)-1)*B(n+1)/(n+1) for n>0 of 1 + 2 * tanh(x/2) (cf. A000182 and A089171). - Tom Copeland, Oct 19 2016
a(n) = -2*zeta(-n)*A335956(n+1). - Peter Luschny, Jul 21 2020
Conjecture: r(n) = Sum_{k=0..n} A001147(k) * A039755(n, k) * (-1)^k / (k+1) where r(n) = a(n) / A006519(n+1) = (n!) * ([x^n] (2 / (1 + exp(-x)))), for n >= 0. - Werner Schulte, Feb 16 2024

Extensions

New name, a simpler standalone definition by Peter Luschny, Jul 13 2012
Second comment corrected by Robert Israel, Feb 21 2016

A209308 Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024
Offset: 0

Views

Author

Paul Curtz, Jan 18 2013

Keywords

Comments

1/2^n and successive rows are
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,...
1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 7/128, 1/32,... = A000265/A075101, the Oresme numbers n/2^n. Paul Curtz, Jan 18 2013 and May 11 2016
0, 1/4, 3/8, 3/8, 5/16, 15/64, 21/128,... = (0 before A069834)/new,
-1/4, -1/4, 0, 1/4, 25/64, 27/64,...
0, -1/2, -3/4, -9/16, -5/32,...
1/2, 1/2, -9/16, -13/8,...
0, 17/8, 51/16,...
-17/8, -17/8,...
0
The first column is A198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,... in A060096.
Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1, ... .
Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512, ... = -A075677/new, from Collatz problem.
There are three different Bernoulli numbers:
The first Bernoulli numbers are 1, -1/2, 1/6, 0,... = A027641(n)/A027642(n).
The second Bernoulli numbers are 1, 1/2, 1/6, 0,... = A164555(n)/A027642(n). These are the binomial transform of the first one.
The third Bernoulli numbers are 1, 0, 1/6, 0,... = A176327(n)/A027642(n), the half sum. Via A177427(n) and A191567(n), they yield the Balmer series A061037/A061038.
There are three different fractional Euler numbers:
1) The first are 1, -1/2, 0, 1/4, 0, -1/2,... in A060096(n).
Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... = A000225(n+1)/A000079(n) ).
2) The second are 1, 1/2, 0, -1/4, 0, 1/2,... , mentioned by Wolfdieter Lang in A198631(n).
3) The third are 0, 1/2, 0, -1/4, 0, 1/2,... , half difference of 2) and 1).
Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... = A000225(n)/A000079(n) ). See A097110(n).

Examples

			Triangle begins:
  1,
  2, 2,
  1, 2,  4,
  4, 4,  8,  8,
  1, 4,  8,  4, 16,
  2, 2,  1,  8, 32, 32,
  1, 2,  4,  4, 16, 32,  64,
  8, 8, 16, 16, 64, 64, 128, 128,
  ...
		

Crossrefs

Cf. Second Bernoulli numbers A164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1), A272263.

Programs

  • Mathematica
    max = 10; t[0, k_] := 1/2^k; t[n_, k_] := t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2013 *)

A000187 Generalized Euler numbers, c(5,n).

Original entry on oeis.org

2, 30, 3522, 1066590, 604935042, 551609685150, 737740947722562, 1360427147514751710, 3308161927353377294082, 10256718523496425979562270, 39490468691102039103925777602, 184856411587530526077816051412830, 1033888847501229495999134528615701122
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 1066590: L_5(7) = Sum_{n >= 0} (-1)^n*( 1/(10*n+1)^7 + 1/(10*n+3)^7 + 1/(10*n+7)^7 + 1/(10*n+9)^7 ) = 1066590*( (1/6!)*sqrt(5)*(Pi/10)^7 ). - _Peter Bala_, Nov 18 2020
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq((-1)^n*(10)^(2*n)*(euler(2*n,1/10) + euler(2*n,3/10)), n = 0..11); # Peter Bala, Nov 18 2020
    egf := sec(5*x)*(cos(2*x) + cos(4*x)): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0=5; nmax=20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2n+1)*Pi^(-2n-1)*(2n)!*a^(2n+1/2)*L[a, 2n+1, km] // Round; cc[km_] := cc[km] = Table[ c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[ km/2, km = 2km]]; A000187 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)

Formula

From the Shanks paper: Consider the Dirichlet series L_a(s) = sum_{k>=0} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers c_(a,n) are defined by L_a(2n+1)= (Pi/(2a))^(2n+1)*sqrt(a)* c(a,n)/ (2n)! for a > 1 and n = 0,1,2,... - Sean A. Irvine, Mar 26 2012
From Peter Bala, Nov 18 2020: (Start)
a(n) = (-1)^n*10^(2*n)*( E(2*n,1/10) + E(2*n,3/10) ), where E(n,x) are the Euler polynomials - see A060096.
Row 5 of A235605.
G.f.: A(x) = 2*cos(x)*cos(3*x)/( 2*cos(x)*cos(4*x) - cos(3*x) ) = 2 + 30*x^2/2! + 3522*x^4/4! + ....
Alternative forms:
A(x) = (exp(i*x) + exp(3*i*x) + exp(7*i*x) + exp(9*i*x))/(1 + exp(10*i*x));
A(x) = (sqrt(5)/10)*( sec(x + Pi/5) + sec(x + 2*Pi/5) - sec(x + 3*Pi/5) - sec(x + 4*Pi/5) ). (End)
a(n) = (2*n)!*[x^(2*n)](sec(5*x)*(cos(2*x) + cos(4*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(4*n + 2) * 5^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A060097 Denominator of coefficients of Euler polynomials (rising powers).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Examples

			The rational triangle A060096(n,m)/a(n,m) starts
  n\m  0    1    2    3    4    5    6    7  8  ...
  0:   1
  1: -1/2   1
  2:   0   -1    1
  3:  1/4   0  -3/2   1
  4:   0    1    0   -2    1
  5: -1/2   0   5/2   0  -5/2   1
  6:   0   -3    0    5    0   -3    1
  7: 17/8   0 -21/2   0  35/4   0  -7/2   1
  8:   0   17    0  -28    0   14    0   -4  1
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 20, equations 20:4:1 - 20:4:8 at pages 177-178.

Crossrefs

For numerators see A060096.

Programs

  • Mathematica
    Denominator[Flatten[Table[CoefficientList[EulerE[n, x], x], {n, 0, 13}]]] (* Jean-François Alcover, Apr 29 2011 *)

A208679 Kashaev's invariant for the (5,2)-torus knot (Solomon's seal knot).

Original entry on oeis.org

1, 71, 14641, 6242711, 4555133281, 5076970085351, 8024733763147921, 17074591123571719991, 47056485265721520250561, 163059403058191163396938631, 693897612604719894794535433201
Offset: 1

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

In general, Kashaev’s invariant for the (2*m+1,2)-torus knot has e.g.f. 1/2*sin(2*x)/cos((2*m+1)*x). Case m = 1 is A002439. For other examples see A208680 and A208681.
From Peter Bala, Dec 20 2021: (Start)
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, ...] with an apparent pre-period of length 1 and a period [8, 7, 5, 1, 2, 4] of length 6 = phi(9).
2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. (End)

Crossrefs

Cf. A002439 ((3,2)-torus knot), A208680, A208681, A208730, A208733, A057569.

Programs

  • Maple
    A208679 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-25)^k*binomial(2*n-1,2*k)*procname(n-k),k=1..n) ; end if; end proc:
    seq(A208679(n),n = 1..20) # Peter Bala, Dec 20 2021
    A208679 := 5*10^(2*n-2)*(-1)^n*euler(2*n-1,3/10):
    seq(A208679(n),n = 1..11); # Miles Wilson, Aug 05 2024
  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[1/2*Sin[2*x]/Cos[5*x], {x, 0, 2*nmax}], x] * Range[0, 2*nmax - 1]!)[[j]], {j, 2, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Aug 30 2015 *)
  • PARI
    my(x='x+O('x^30), v=Vec(serlaplace((1/2)*sin(2*x)/cos(5*x)))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, Aug 08 2024

Formula

E.g.f.: (1/2)*sin(2*x)/cos(5*x) = x + 71*x^3/3! + 14641*x^5/5! + ....
Define F(q) := Sum_{m,n >= 0} (q^(-m*n)*product {i = 1.. m+n} (1-q^i)). For the expansion of F(1-q) and F(exp(-t)) see A208733 and A208730 respectively. Kitami gives the conjectural e.g.f. exp(-9*t)*F(exp(-40*t)) = 1 + 71*t + 14641*t^2/2! + ....
a(n) = (-1)^n/(4*n+4)*20^(2*n+1)*Sum_{k = 1..20} X(k)*B(2*n+2,k/20), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 20 given by X(n) = 0 except for X(20*n+3) = X(20*n+17) = 1 and X(20*n+7) = X(20*n+13) = -1.
a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
a(n) ~ (2*n-1)! * 2^(2*n-3/2) * 5^(2*n-1) * sqrt(5-sqrt(5)) / Pi^(2*n). - Vaclav Kotesovec, Aug 30 2015
From Peter Bala, May 11 2017: (Start)
Let X = 40*x. G.f. with offset 0: A(x) = 1 + 71*x + 14641*x^2 + ... = 1/(1 + 9*x - 2*X/(1 - 3*X/(1 + 9*x - 9*X/(1 - 11*X/(1 + 9*x - 21*X/(1 - 24*X/(1 + 9*x - ...))))))), where the sequence [2, 3, 9, 11, ..., n*(5*n - 1)/2, n*(5*n + 1)/2, ...] of unsigned coefficients in the partial numerators of the continued fraction is A057569.
A(x) = 1/(1 + 49*x - 3*X/(1 - 2*X/(1 + 49*x - 11*X/(1 - 9*X/(1 + 49*x - 24*X/(1 - 21*X/(1 + 49*x - 42*X/(1 - 38*X/(1 + 49*x - ...))))))))), where the sequence [3, 2, 11, 9, 24, 21, ...] of unsigned coefficients in the partial numerators of the continued fraction is obtained by swapping pairs of adjacent terms of A057569. Let B(x) = 1/(1 - 9*x)*A(x/(1 - 9*x)), that is, B(x) is the 9_th binomial transform of A(x). Then B(x/40) = 1 + 2*x + 10*x^2 + 104*x^3 + ... is the o.g.f. for A208730. (End)
From Peter Bala, Dec 20 2021: (Start)
a(1) = 1, a(n) = (-4)^(n-1) - Sum_{k = 1..n} (-25)^k*C(2*n-1,2*k)*a(n-k).
a(n) == 71^(n-1) ( mod (2^7)*3*(5^2) ). (End)
a(n) = 5*10^(2*n - 2)*(-1)^n*E(2*n - 1, 3/10), where E(n,x) is the n-th Euler polynomial in x (A060096/A060097). - Miles Wilson, Aug 05 2024

A060082 Coefficients of even-indexed Euler polynomials (falling powers without zeros).

Original entry on oeis.org

1, 1, -1, 1, -2, 1, 1, -3, 5, -3, 1, -4, 14, -28, 17, 1, -5, 30, -126, 255, -155, 1, -6, 55, -396, 1683, -3410, 2073, 1, -7, 91, -1001, 7293, -31031, 62881, -38227, 1, -8, 140, -2184, 24310, -177320, 754572, -1529080, 929569, 1, -9, 204, -4284, 67626, -753610, 5497596, -23394924, 47408019
Offset: 0

Views

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Comments

E(2n,x) = x^(2n) + Sum_{k=1..n} a(n,k)*x^(2n-2k+1).

Examples

			E(0,x) = 1.
E(2,x) = x^2 - x.
E(4,x) = x^4 - 2*x^3 + x.
E(6,x) = x^6 - 3*x^5 + 5*x^3 - 3*x.
E(8,x) = x^8 - 4*x^7 + 14*x^5 - 28*x^3 + 17*x.
E(10,x) = x^10 - 5*x^9 + 30*x^7 - 126*x^5 + 255*x^3 - 155*x.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

Crossrefs

E(2n, 1/2)*(-4)^n = A000364(n) (signless Euler numbers without zeros).
-E(2n, -1/2)*(-4)^n/3 = A076552(n), -E(2n, 1/3)*(-9)^n/2 = A002114(n).
Cf. A060083 (rising powers), A060096-7 (Euler polynomials), A004172 (with zeros).
Columns (left edge) include A000330, A053132. Columns (right edge) include A001469.

Programs

  • Mathematica
    Table[ CoefficientList[ EulerE[2*n, x], x] // Reverse // DeleteCases[#, 0]&, {n, 0, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    {B(n,v='x)=sum(i=0,n,binomial(n,i)*bernfrac(i)*v^(n-i))} E(n,v='x)=2/(n+1)*(B(n+1,v)-2^(n+1)*B(n+1,v/2)) \\ Ralf Stephan, Nov 05 2004

Formula

E(n, x) = 2/(n+1) * [B(n+1, x) - 2^(n+1)*B(n+1, x/2) ], with B(n, x) the Bernoulli polynomials.

Extensions

Edited by Ralf Stephan, Nov 05 2004

A227577 Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 1, 1, 1, 0, -1, -1, -5, -1, -1, 0, 17, 17, 13, 5, -5, -13, -17, -17, 0, 17, 17, 47, 13, 47, 17, 17, 0, -31, -31, -107, -73, -13, 13, 73, 107, 31, 31, 0, -31, -31, -355
Offset: 0

Views

Author

Paul Curtz, Jul 16 2013

Keywords

Comments

The difference table of the Euler polynomials evaluated at x=1:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, ...
-1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, ...
0, 1/4, 1/2, 1/4; -1, -13/8, 17/4, 107/8, ...
1/4, 1/4, -1/4, -5/4, -5/8, 47/8, 73/8, -355/8, ...
0, -1/2, -1, 5/8 13/2, 13/4, -107/2, -655/8, ...
-1/2, -1/2, 13/8, 47/8, -13/4, -227/4, -227/8, 5687/8, ...
0, 17/8, 17/4, -73/8, -107/2, 227/8, 2957/4, 2957/8, ...
17/8, 17/8, -107/8, -355/8, 655/8, 5687/8, -2957/8, -107125/8, ...
To compute the difference table, take
1, 1/2;
-1/2;
The next term is always half of the sum of the antidiagonals. Hence (-1/2 + 1/2 = 0)
1, 1/2, 0;
-1/2, -1/2;
0;
The first column (inverse binomial transform) lists the numbers (1, -1/2, 0, 1/4, ..., not in the OEIS; corresponds to A027641/A027642). See A209308 and A060096.
A198631(n)/A006519(n+1) is an autosequence. See A181722.
Note the main diagonal: 1, -1/2, 1/2, -5/4, 13/2, -227/4, 2957/4, -107125/8, .... (See A212196/A181131.)
This twice the first upper diagonal. The autosequence is of the second kind.
From 0, -1, the algorithm gives A226158(n), full Genocchi numbers, autosequence of the first kind.
The difference table of the Bernoulli polynomials evaluated at x=1 is (apart from signs) A085737/A085738 and its analysis by Ludwig Seidel was discussed in the Luschny link. - Peter Luschny, Jul 18 2013

Examples

			Read by antidiagonals:
    1;
  -1/2,  1/2;
    0,  -1/2,   0;
   1/4,  1/4, -1/4, -1/4;
    0,   1/4,  1/2,  1/4,   0;
  -1/2, -1/2, -1/4,  1/4,  1/2,  1/2;
    0,  -1/2, - 1,  -5/4,  -1,  -1/2,   0;
  ...
Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2).
Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
		

Crossrefs

Programs

  • Maple
    DifferenceTableEulerPolynomials := proc(n) local A,m,k,x;
    A := array(0..n,0..n); x := 1;
    for m from 0 to n do for k from 0 to n do A[m,k]:= 0 od od;
    for m from 0 to n do A[m,0] := euler(m,x);
       for k from m-1 by -1 to 0 do
          A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
    LinearAlgebra[Transpose](convert(A, Matrix)) end:
    DifferenceTableEulerPolynomials(7);  # Peter Luschny, Jul 18 2013
  • Mathematica
    t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013 *)
  • Sage
    def DifferenceTableEulerPolynomialsEvaluatedAt1(n) :
        @CachedFunction
        def ep1(n):          # Euler polynomial at x=1
            if n < 2: return 1 - n/2
            s = add(binomial(n,k)*ep1(k) for k in (0..n-1))
            return 1 - s/2
        T = matrix(QQ, n)
        for m in range(n) :  # Compute difference table
            T[m,0] = ep1(m)
            for k in range(m-1,-1,-1) :
                T[k,m-k] = T[k+1,m-k-1] - T[k,m-k-1]
        return T
    def A227577_list(m):
        D = DifferenceTableEulerPolynomialsEvaluatedAt1(m)
        return [D[k,n-k].numerator() for n in range(m) for k in (0..n)]
    A227577_list(12)  # Peter Luschny, Jul 18 2013

Extensions

Corrected by Jean-François Alcover, Jul 17 2013

A233508 Numerators of the triangle of polynomial coefficients P(0,x)=1, 2*P(n)=(1+x)*((1+x)^(n-1)+x^(n-1)). Of the first array of A133135.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 3, 5, 1, 1, 5, 5, 5, 3, 1, 1, 3, 15, 10, 15, 7, 1, 1, 7, 21, 35, 35, 21, 4, 1, 1, 4, 14, 28, 35, 28, 14, 9, 1, 1, 9, 18, 42, 63, 63, 42, 18, 5, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 11, 1
Offset: 0

Views

Author

Paul Curtz, Dec 11 2013

Keywords

Comments

Discovered via Euler polynomials A060096(n)/A060097(n).
The fractional sequence is 1, 1, 1, 1/2, 3/2, 1, 1/2, 3/2, 2, 1, 1/2, 2, 3, 5/2, 1,... =a(n)/b(n). There is a correspondant sequence for Bernoulli polynomials (*).

Examples

			1,
1, 1,
1, 3, 1,
1, 3, 2, 1,
1, 2, 3, 5, 1,
1, 5, 5, 5, 3, 1, etc.
		

Crossrefs

Cf. (*) A193815.

Programs

  • Mathematica
    p[n_] := (1+x)*((1+x)^(n-1)+x^(n-1))/2; t[n_, k_] := Coefficient[p[n], x, k] // Numerator; Table[t[n, k], {n, 0, 10 }, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)

Formula

a(n) = reduced A133138(n)/A007395.

A178395 Triangle T(n,m) read by rows: the numerator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0 <= m <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 15, 10, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 4, 14, 28, 35, 28, 14, 4, 1, 1, 9, 18, 42, 63, 63, 42, 18, 9, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 5, 1, 1, 11, 55, 165, 165, 231, 231, 165, 165, 55, 11, 1, 1, 6, 33, 110, 495, 396, 462, 396, 495, 110, 33, 6, 1
Offset: 0

Views

Author

Paul Curtz, May 27 2010

Keywords

Comments

The triangle of fractions A060096(n,m)/A060097(n,m) contains the coefficients of the Euler Polynomial E(n,x) in row n. The matrix inverse of this triangle is
1;
1/2, 1;
1/2, 1, 1;
1/2, 3/2, 3/2, 1;
1/2, 2, 3, 2, 1;
1/2, 5/2, 5, 5, 5/2, 1;
and defines inverse Euler polynomials E^{-1}(n,x) assuming that row n and column m contain the coefficient [x^m] E^{-1}(n,x). The column m=0 is 1 if n=0, otherwise 1/2.
The current triangle T(n,m) shows the numerator of [x^m] E^{-1}(n,x).
Numerators of exponential Riordan array [(1+exp(x))/2,x]. Central coefficients T(2n,n) are A088218. - Paul Barry, Sep 07 2010

Examples

			From _Paul Barry_, Sep 07 2010: (Start)
Triangle begins
  1;
  1,   1;
  1,   1,   1;
  1,   3,   3,   1;
  1,   2,   3,   2,   1;
  1,   5,   5,   5,   5,   1;
  1,   3,  15,  10,  15,   3,   1;
  1,   7,  21,  35,  35,  21,   7,   1;
  1,   4,  14,  28,  35,  28,  14,   4,   1;
  1,   9,  18,  42,  63,  63,  42,  18,   9,   1;
  1,   5,  45,  60, 105, 126, 105,  60,  45,   5,   1; (End)
		

Crossrefs

Cf. A178474 (denominators).

Programs

  • Maple
    nm := 15 : eM := Matrix(nm,nm) :
    for n from 0 to nm-1 do for m from 0 to n do eM[n+1,m+1] := coeff(euler(n,x),x,m) ; end do: for m from n+1 to nm-1 do eM[n+1,m+1] := 0 ; end do: end do:
    eM := LinearAlgebra[MatrixInverse](eM) :
    for n from 1 to nm do for m from 1 to n do printf("%d,", numer(eM[n,m])) ; end do: end do: # R. J. Mathar, Dec 21 2010
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 13;
    R = RiordanArray[(1 + E^#)/2&, #&, rows, True];
    R // Flatten // Numerator (* Jean-François Alcover, Jul 20 2019 *)
  • PARI
    T(n,k)=numerator((binomial(n,k)+binomial(0,n-k))/2);
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());

Formula

T(n,0) = 1.
T(n,m) = T(n,n-m).
T(n,1) = A026741(n).
T(n,2) = A064038(n) (numerators related to A061041).
Number triangle T(n,k) = [k<=n]*numerator((C(n,k) + C(0,n-k))/2). - Paul Barry, Sep 07 2010

A098434 Triangle read by rows: coefficients of Genocchi polynomials G(n,x); n times the Euler polynomials.

Original entry on oeis.org

1, 2, -1, 3, -3, 0, 4, -6, 0, 1, 5, -10, 0, 5, 0, 6, -15, 0, 15, 0, -3, 7, -21, 0, 35, 0, -21, 0, 8, -28, 0, 70, 0, -84, 0, 17, 9, -36, 0, 126, 0, -252, 0, 153, 0, 10, -45, 0, 210, 0, -630, 0, 765, 0, -155, 11, -55, 0, 330, 0, -1386, 0, 2805, 0, -1705, 0, 12, -66, 0, 495
Offset: 1

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Comments

The Genocchi numbers A001489 appear as constant term of every second polynomial and as the negative sum of its coefficients.

Examples

			G(1,x) = 1
G(2,x) = 2*x - 1
G(3,x) = 3*x^2 - 3*x
G(4,x) = 4*x^3 - 6*x^2 + 1
G(5,x) = 5*x^4 - 10*x^3 + 5*x
G(6,x) = 6*x^5 - 15*x^4 + 15*x^2 - 3
G(7,x) = 7*x^6 - 21*x^5 + 35*x^3 - 21*x
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, pp. 573-574.

Crossrefs

A001489(n) = G(2n, 0) = -G(2n, 1). Cf. A081733.

Programs

  • Maple
    p := proc(n,x) local j,k; add(binomial(n,k)*add(binomial(k,j)*2^j*bernoulli(j), j=0..k-1)*x^(n-k),k=0..n) end;
    seq(print(sort(p(n,x))),n=1..8); # Peter Luschny, Jul 07 2009
  • Mathematica
    g[n_, x_] := Sum[ k Binomial[n, k] EulerE[k-1, 0] x^(n-k), {k, 1, n}]; Table[ CoefficientList[g[n, x], x] // Reverse, {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2013, after Peter Luschny *)
  • PARI
    G(n)=subst(polcoeff(serlaplace(2*x*exp(x*y)/(exp(x)+1)),n),y,x)

Formula

E.g.f.: Sum_{n >= 1} G(n, x)*t^n/n! = 2*t*e^(x*t)/(1 + e^t).
G(n, x) = Sum_{k=1..n} k*C(n, k)* Euler(k-1, 0)*x^(n-k). - Peter Luschny, Jul 13 2009
G(n, x) = n*Euler(n-1,x) = Sum_{k=0..n} binomial(n,k)*Bernoulli(k)*2*(1-2^k)*x^(n-k), with the Euler polynomials Euler(n,x) (see A060096/A060097) and Bernoulli numbers A027641/A027642. See the Graham et al. reference, pp. 573-574, Exercise 7.52. - Wolfdieter Lang, Mar 13 2017
Showing 1-10 of 12 results. Next