cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A292911 Numbers n such that A291897(n) is divisible by (2*n-1)^3.

Original entry on oeis.org

1, 3, 7, 9, 15, 19, 21, 27, 31, 37, 45, 49, 51, 55, 57, 69, 75, 79, 87, 91, 97, 99, 115, 117, 121, 129, 135, 139, 141, 147, 157, 159, 169, 175, 177, 187, 195, 199, 201, 205, 211, 217, 225, 229, 231, 255, 261, 271, 279, 285, 289, 297, 301, 307, 309, 321, 327
Offset: 1

Views

Author

Vladimir Shevelev, Sep 26 2017

Keywords

Comments

Conjecture: Every prime of the form 4*k+1 (A002144) is contained in the sequence {2*a(n)-1}.
The author's former conjecture that, for n>=2 the numbers {2*a(n)-1} are consecutive primes of the form 4*k+1, was disproved at n = 553 by Peter J. C. Moses. (553*2 - 1 = 1105 is the smallest term which is a product of three distinct (4*k+1)-primes). - Vladimir Shevelev, Sep 27 2017
553 is also (after 1) the smallest number which is missing from A119681 but is present here. - R. J. Mathar, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    Select[Array[{2^IntegerExponent[2 #, 2] EulerE[2 # - 1, #], #} &, 330], Divisible[#1, (2 #2 - 1)^3] & @@ # &][[All, -1]] (* Michael De Vlieger, Sep 27 2017, after Peter Luschny at A291897 *)

Formula

If the conjecture is true, then for n>=2, a(n) <= (A002144(n-1) + 1)/2 (the equality holds up to 90).

Extensions

More terms from Peter J. C. Moses, Sep 26 2017

A291982 a(n) = Euler(n, n+1) * 2^valuation(n+1, 2), where Euler(n, x) denotes the Euler polynomial.

Original entry on oeis.org

1, 3, 6, 161, 380, 9251, 68922, 9718545, 24721272, 1140755269, 14712346550, 1678097074579, 13104139232340, 889926827467887, 16319429252249970, 10286621696853755681, 27076409740571217392, 2427916115944458451025, 57728302956904672126062
Offset: 0

Views

Author

Peter Luschny, Sep 22 2017

Keywords

Comments

Conjecture: If n >= 2 is even then n*(n+1) divides a(n).
This conjecture was inspired by Vladimir Shevelev's conjecture in A291897.

Crossrefs

Programs

  • Maple
    A291982 := n -> euler(n, n+1)*2^(padic[ordp](n+1, 2)):
    seq(A291982(n), n=0..18);
  • Mathematica
    Table[2^IntegerExponent[n+1, 2] EulerE[n, n+1], {n, 1, 15}]
  • Python
    from sympy import euler
    def A291982(n): return euler(n,n+1)*(n+1 & -n-1) # Chai Wah Wu, Jul 07 2022

Formula

a(n) = Euler(n, n+1)*2^A007814(n+1).

A292791 The numerator of the real part of E(2n-1, i), where E(n, x) is the Euler polynomial.

Original entry on oeis.org

-1, 7, -11, 199, -361, 8017, -63311, 10775663, -37120861, 2572609327, -54738555011, 11225458402189, -170606509547761, 24269619087650437, -998364772178081111, 1505193846304099711711, -10065529459831250937061, 2427246234079407797537347, -163790353311268893725697611
Offset: 1

Views

Author

Robert G. Wilson v, Sep 23 2017

Keywords

Comments

The imaginary part is +-i.
The denominators are powers of two; A171977(n) = 2^A001511(n).
For E(2n, i) see A292792.
a(4n) == +-1 (mod 6),
a(4n+1) == 5 (mod 6),
a(4n+2) == 1 (mod 6),
a(4n+3) == 1 (mod 6).
Inspired by A291897.

Examples

			a(3) = -11 since E(5, i) = -11/2 + i.
		

Crossrefs

Cf. A292792.

Programs

  • Mathematica
    f[n_] := Numerator[ EulerE[2n -1, I] - I^(2n -1)]; Array[f, 19]

A292792 The imaginary part of E(2n, i)/i, where E(n, x) is the Euler polynomial.

Original entry on oeis.org

-1, 3, -11, 63, -571, 7623, -140531, 3417183, -105946891, 4079170743, -190947551651, 10679561580303, -703342782666811, 53875223570677863, -4749070236390684371, 477331966210918815423, -54264228263241408276331, 6927625954707653092264983, -986892857756676619338994691
Offset: 1

Views

Author

Robert G. Wilson v, Sep 23 2017

Keywords

Comments

The real part is +- 1.
For E(2n-1, i) see A292791.
a(2n) == 3 (mod 6),
a(4n+1) == 5 (mod 6),
a(4n+3) == 1 (mod 6).
Inspired by A291897.
Also the negative imaginary part of E(2n, 1+i) or the imaginary part of E(2n, 1-i).

Examples

			a(3) = -11 since E(6, i) = -1 - 11i.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (EulerE[2n, I] - I^(2n))/I; Array[f, 19]

A292782 a(n) = E(2n,n)/2, where E(n,x) is the Euler polynomial.

Original entry on oeis.org

0, 1, 63, 6306, 990550, 227890755, 72524317341, 30560156566660, 16483798503292716, 11080974333713379525, 9085235508141504416155, 8924963654575108415598246, 10349560274697013067017980738, 13989200573862071630368836403591, 21802322447828101388917112243376825
Offset: 1

Views

Author

Vladimir Shevelev, Sep 23 2017

Keywords

Comments

Conjecture. For n >= 2, a(n) is divisible by n(n-1)/2, moreover, for odd n, a(n) is divisible by n^2(n-1)/2.

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Programs

Formula

a(n) = (-1)^n*(1^(2*n) - 2^(2*n) + ... +(-1)^n*(n-1)^(2*n)).
a(n) ~ c * n^(2*n), where c = A349003/2 = 1/(1 + exp(2)) = 0.1192029220221175559402708586976... - Vaclav Kotesovec, Nov 05 2021

Extensions

More terms from Peter J. C. Moses, Sep 23 2017

A292830 a(1) = 1, for n>=2, a(n) = B(2*n-1, n), where B(n, x) is the Bernoulli polynomial.

Original entry on oeis.org

1, 3, 85, 5558, 651186, 119617025, 31697064295, 11444459810700, 5400661033684164, 3227014932144214335, 2381276769035483594793, 2126703075527239956801538, 2260781626706432961741917750, 2820945601365221814523529200893, 4082702018096881373945823658830923
Offset: 1

Views

Author

Vladimir Shevelev, Sep 24 2017

Keywords

Comments

Note that B(2*n-1,n) is an integer for all positive integer n, except for n=1, for which B(1,1) = 1/2, so for all n>=1, a(n) is the numerator of B(2*n-1,n). Also note that a(n) is always divisible by (2*n-1) (cf. formula).

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Cf. A291897.

Programs

  • Maple
    a := n -> `if`(n=1, 1, bernoulli(2*n-1, n)): # Peter Luschny, Sep 25 2017
  • Mathematica
    Array[Ceiling@ BernoulliB[2 # - 1, #] &, 15] (* Michael De Vlieger, Sep 24 2017 *)
  • PARI
    a(n) = if (n==1, 1, subst(bernpol(2*n-1), x, n)); \\ Michel Marcus, Sep 25 2017

Formula

From [Abramowitz and Stegun] for n >= 2 we have a(n) = (2*n - 1) * (1^(2*n - 2) + 2^(2*n - 2) + ... + (n-1)^(2*n - 2)).

Extensions

More terms from Peter J. C. Moses, Sep 24 2017
Showing 1-6 of 6 results.