cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141459 a(n) = Product_{p-1 divides n} p, where p is an odd prime.

Original entry on oeis.org

1, 1, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1, 435, 1, 177, 1, 28393365, 1, 3, 1, 255, 1, 32361, 1, 15, 1, 2343, 1, 70050435
Offset: 0

Views

Author

Paul Curtz, Aug 08 2008

Keywords

Comments

Previous name was: A027760(n)/2 for n>=1, a(0) = 1.
Conjecture: a(n) = denominator of integral_{0..1}(log(1-1/x)^n) dx. - Jean-François Alcover, Feb 01 2013
Define the generalized Bernoulli function as B(s,z) = -s*z^s*HurwitzZeta(1-s,1/z) for Re(1/z) > 0 and B(0,z) = 1 for all z; further the generalized Bernoulli polynomials as Bp(m,n,z) = Sum_{j=0..n} B(j,m)*C(n,j)*(z-1)^(n-j) then the a(n) are denominators of Bp(2,n,1), i. e. of the generalized Bernoulli numbers in the case m=2. The numerators of these numbers are A157779(n). - Peter Luschny, May 17 2015
From Peter Luschny, Nov 22 2015: (Start)
a(n) are the denominators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The numerators are A239275(n).
a(n) is the odd part of A141056(n).
a(n) is squarefree, by the von Staudt-Clausen theorem. (End)
Apparently a(n) = denominator(Sum_{k=0..n-1}(-1)^k*E2(n-1, k+1)/binomial(2*n-1, k+1)) where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

Examples

			The denominators of 1, 0, -1/3, 0, 7/15, 0, -31/21, 0, 127/15, 0, -2555/33, 0, 1414477/1365, ...
		

Crossrefs

Programs

  • Maple
    Bfun := (s,z) -> `if`(s=0,1,-s*z^s*Zeta(0,1-s,1/z): # generalized Bernoulli function
    Bpoly := (m,n,z) -> add(Bfun(j,m)*binomial(n,j)*(z-1)^(n-j),j=0..n): # generalized Bernoulli polynomials
    seq(Bpoly(2,n,1),n=0..50): denom([%]);
    # which simplifies to:
    a := n -> 0^n+add(Zeta(1-j)*(2^j-2)*j*binomial(n,j), j=1..n):
    seq(denom(a(n)), n=0..50); # Peter Luschny, May 17 2015
    # Alternatively:
    with(numtheory):
    ClausenOdd := proc(n) local S, m;
    S := map(i -> i + 1, divisors(n));
    S := select(isprime, S) minus {2};
    mul(m, m = S) end: seq(ClausenOdd(n), n=0..72); # Peter Luschny, Nov 22 2015
    # Alternatively:
    N:= 1000: # to get a(0) to a(N)
    V:= Array(0..N, 1):
    for p in select(isprime, [seq(i,i=3..N+1,2)]) do
      R:=[seq(j,j=p-1..N, p-1)]:
      V[R]:= V[R] * p;
    od:
    convert(V,list); # Robert Israel, Nov 22 2015
  • Mathematica
    a[n_] := If[OddQ[n], 1, Denominator[-2*(2^(n - 1) - 1)*BernoulliB[n]]]; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jan 30 2013 *)
    Table[Times @@ Select[Divisors@ n + 1, PrimeQ@ # && OddQ@ # &] + Boole[n == 0], {n, 0, 72}] (* Michael De Vlieger, Apr 30 2017 *)
  • PARI
    A141056(n) =
    {
        p = 1;
        if (n > 0,
            fordiv(n, d,
                r = d + 1;
                if (isprime(r) & r>2, p = p*r)
            )
        );
        return(p)
    }
    for(n=0, 72, print1(A141056(n), ", ")); \\ Peter Luschny, Nov 22 2015
    
  • Sage
    def A141459_list(size):
        f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size))
        t = taylor(f, x, 0, size)
        return [(factorial(n)*s).denominator() for n,s in enumerate (t.list())]
    print(A141459_list(72)) # Peter Luschny, Jul 05 2016

Formula

a(2*n+1) = 1. a(2*n)= A001897(n).
a(n) = denominator(0^n + Sum_{j=1..n} zeta(1-j)*(2^j-2)*j*C(n,j)). - Peter Luschny, May 17 2015
Let P(x)= Sum_{n>=0} x^(2*n+1)/(2*n+1)! then a(n) = denominator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016
a(n) = A157818(n)/4^n. See a comment under A157817, also for other Bernoulli numbers B[4,1] and B[4,3] with this denominator. - Wolfdieter Lang, Apr 28 2017

Extensions

1 prepended and offset set to 0 by Peter Luschny, May 17 2015
New name from Peter Luschny, Nov 22 2015

A157817 Numerator of Bernoulli(n, 1/4).

Original entry on oeis.org

1, -1, -1, 3, 7, -25, -31, 427, 127, -12465, -2555, 555731, 1414477, -35135945, -57337, 2990414715, 118518239, -329655706465, -5749691557, 45692713833379, 91546277357, -7777794952988025, -1792042792463, 1595024111042171723, 1982765468311237, -387863354088927172625
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Comments

From Wolfdieter Lang, Apr 28 2017: (Start)
The rationals r(n) = Sum_{k=0..n} ((-1)^k / (k+1))*A285061(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A225473(n, k) define generalized Bernoulli numbers, named B[4,1](n), in terms of the generalized Stirling2 numbers S2[4,1]. The numerators of r(n) are a(n) and the denominators A141459(n). r(n) = B[4,1](n) = 4^n*B(n, 1/4) with the Bernoulli polynomials B(n, x) = Bernoulli(n, x) from A196838/A196839 or A053382/A053383.
The generalized Bernoulli numbers B[4,3](n) = Sum_{k=0..n} ((-1)^k/(k+1))* A225467(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A225473(n, k) satisfy
B[4,3](n) = 4^n*B(n, 3/4) = (-1)^n*B[4,1](n). They have numerators (-1)^n*a(n) and also denominators A141459(n). (End)

Crossrefs

For denominators see A157818 and A141459.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, 1/4]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)

Formula

From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(Bernoulli(n, 1/4)) with denominator A157818(n) (see the name).
a(n) = numerator(4^n*Bernoulli(n, 1/4)) with denominator A141459(n) = A157818(n)/4^n.
a(n)*(-1)^n = numerator(4^n*Bernoulli(n, 3/4)) with denominator A141459(n).
(End)

A157819 Numerator of Bernoulli(n, -1/4).

Original entry on oeis.org

1, -3, 23, -15, 247, 5, 473, -455, 607, 12429, -1235, -555775, 1479997, 35135893, -57169, -2990414775, 118534559, 329655706397, -5749662829, -45692713833455, 91546290557, 7777794952987941, -1792042786391, -1595024111042171815, 1982765468442277
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For denominators see A157818.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, -1/4]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)

A157860 Numerator of Bernoulli(n, -3/4).

Original entry on oeis.org

1, -5, 71, -105, 6487, -1645, 122441, -19985, 1049887, -248661, 25979005, -2042425, 11608085917, -62770877, 267788927, 2703436575, 234292680479, -332582883493, 3704188911107, 45663269876215, 15433397641757, -7778087842877709, 61723221856153, 1595021223984687695
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For denominators see A157818.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, -3/4]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
Showing 1-4 of 4 results.