A157881 Expansion of 152*x^2 / (-x^3+1443*x^2-1443*x+1).
0, 152, 219336, 316282512, 456079163120, 657665836936680, 948353680783529592, 1367525350024012735136, 1971970606380945580536672, 2843580246875973503121146040, 4100440744024547410555112053160, 5912832709303150490046968459510832
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..300
- Index entries for linear recurrences with constant coefficients, signature (1443,-1443,1).
Programs
-
Mathematica
LinearRecurrence[{1443,-1443,1},{0,152,219336},20] (* Harvey P. Dale, Jul 18 2019 *)
-
PARI
concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
-
PARI
a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016
Formula
G.f.: 152*x^2/(-x^3+1443*x^2-1443*x+1).
c(1) = 0, c(2) = 152, c(3) = 1443*c(2), c(n) = 1443 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360. - Colin Barker, Jul 25 2016
Extensions
Edited by Alois P. Heinz, Sep 09 2011
Comments