cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157888 a(n) = 81*n^2 + 9.

Original entry on oeis.org

90, 333, 738, 1305, 2034, 2925, 3978, 5193, 6570, 8109, 9810, 11673, 13698, 15885, 18234, 20745, 23418, 26253, 29250, 32409, 35730, 39213, 42858, 46665, 50634, 54765, 59058, 63513, 68130, 72909, 77850, 82953, 88218, 93645, 99234, 104985, 110898, 116973, 123210
Offset: 1

Views

Author

Vincenzo Librandi, Mar 08 2009

Keywords

Comments

The identity (18*n^2 + 1)^2 - (81*n^2 + 9)*(2*n)^2 = 1 can be written as A157889(n)^2 - a(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012

Crossrefs

Programs

  • Magma
    I:=[90, 333, 738]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 05 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {90, 333, 738}, 40] (* Vincenzo Librandi, Feb 05 2012 *)
    81*Range[40]^2+9 (* Harvey P. Dale, Aug 05 2015 *)
  • PARI
    for(n=1, 40, print1(81*n^2 + 9", ")); \\ Vincenzo Librandi, Feb 05 2012

Formula

From Vincenzo Librandi, Feb 05 2012: (Start)
G.f: x*(90 + 63*x + 9*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/3)*Pi/3 - 1)/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/3)*Pi/3)/18. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 9*(exp(x)*(9*x^2 + + 9*x + 1) - 1).
a(n) = 9*A247792(n). (End)