cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157897 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

T(n, k) is the number of tilings of an n-board that use k (1/2, 1)-fences and n-k squares. A (1/2, 1)-fence is a tile composed of two pieces of width 1/2 separated by a gap of width 1. (Result proved in paper by K. Edwards - see the links section.) - Michael A. Allen, Apr 28 2019
T(n, k) is the (n, n-k)-th entry in the (1/(1-x^3), x*(1+x)/(1-x^3)) Riordan array. - Michael A. Allen, Mar 11 2021

Examples

			First few rows of the triangle are:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  0,  1;
  1,  3,  1,  2,  0;
  1,  4,  3,  3,  2,  0;
  1,  5,  6,  5,  6,  0,  1;
  1,  6, 10,  9, 12,  3,  3,  0;
  1,  7, 15, 16, 21, 12,  6,  3,  0;
  1,  8, 21, 27, 35, 30, 14, 12,  0,  1;
  ...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
		

Crossrefs

Cf. A000073 (row sums), A006498, A120415.
Other triangles related to tiling using fences: A059259, A123521, A335964.

Programs

  • Magma
    function T(n,k) // T = A157897
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return 1;
      else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
    
  • Mathematica
    T[n_,k_]:= If[nMichael A. Allen, Apr 28 2019 *)
  • SageMath
    def T(n,k): # T = A157897
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3)
    flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)

Extensions

Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021