A157897
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 0; 1, 1, 0; 1, 2, 0, 1; 1, 3, 1, 2, 0; 1, 4, 3, 3, 2, 0; 1, 5, 6, 5, 6, 0, 1; 1, 6, 10, 9, 12, 3, 3, 0; 1, 7, 15, 16, 21, 12, 6, 3, 0; 1, 8, 21, 27, 35, 30, 14, 12, 0, 1; ... T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
Crossrefs
Programs
-
Magma
function T(n,k) // T = A157897 if k lt 0 or k gt n then return 0; elif k eq 0 then return 1; else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3); end if; return T; end function; [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
-
Mathematica
T[n_,k_]:= If[n
Michael A. Allen, Apr 28 2019 *) -
SageMath
def T(n,k): # T = A157897 if (k<0 or k>n): return 0 elif (k==0): return 1 else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3) flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022
Formula
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)
Extensions
Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021
Comments