A157910 a(n) = 18*n^2 - 1.
17, 71, 161, 287, 449, 647, 881, 1151, 1457, 1799, 2177, 2591, 3041, 3527, 4049, 4607, 5201, 5831, 6497, 7199, 7937, 8711, 9521, 10367, 11249, 12167, 13121, 14111, 15137, 16199, 17297, 18431, 19601, 20807, 22049, 23327, 24641, 25991, 27377, 28799, 30257, 31751
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[17, 71, 161]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 08 2012
-
Mathematica
18Range[40]^2-1 (* Harvey P. Dale, Mar 24 2011 *) LinearRecurrence[{3, -3, 1}, {17, 71, 161}, 50] (* Vincenzo Librandi, Feb 08 2012 *)
-
PARI
for(n=1, 40, print1(18*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 08 2012
Formula
From Vincenzo Librandi, Feb 08 2012: (Start)
G.f.: x*(-17 - 20*x + x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(3*sqrt(2)))*Pi/(3*sqrt(2)) - 1)/2. (End)
Comments