cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157932 Numbers k such that (3^(35*k) + 5^(21*k) + 7^(15*k)) mod 105 is prime.

Original entry on oeis.org

0, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 72, 76, 78, 80, 84, 88, 90, 92, 96, 100, 102, 104, 108, 112, 114, 116, 120, 124, 126, 128, 132, 136, 138, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 174
Offset: 1

Views

Author

Kyle D. Balliet, Mar 09 2009

Keywords

Comments

Let b(k) = (3^(35*k) + 5^(21*k) + 7^(15*k)) mod 105, then sequence {b(k)} is 3, repeat (60, 68, 75, 17, 30, 23, 60, 47, 75, 38, 30, 2), with primes 3, 17, 23, 47, 2. First differences of {a(n)} are 4, 2, 2, 4, 4, 2, 2, 4, .... - Michel Marcus, Aug 15 2013
3^(35*k) + 5^(21*k) + 7^(15*k) = (4^k)*(3^k + 5^k + 7^k) mod 105, then by the division algorithm a simple proof yields that only numbers k of the form 24*m, 24*m+4, 24*m+6, 24*m+8, 24*m+12, 24*m+16, 24*m+18, 24*m+20 will be congruent to a prime modulo 105. Thus the pattern 4, 2, 2, 4, 4, 2, 2, ... will repeat infinitely. - Kyle D. Balliet, Jan 01 2014
Even numbers that can be written as the sum of 3 of their divisors, not necessarily distinct (see A355200). Also, numbers k of the form 12*m, 12*m+4, 12*m+6, 12*m+8. - Bernard Schott, Sep 08 2023

Examples

			a(4) = 3^(35*4) + 5^(21*4) + 7^(15*4) mod 105 = 17 (prime).
		

Crossrefs

Equals {0} Union (A355200 \ A016945) <=> subsequence of even terms in A355200.

Programs

  • Mathematica
    Select[Range[0,180],PrimeQ[Mod[3^(35#)+5^(21#)+7^(15#),105]]&] (* Harvey P. Dale, Oct 10 2017 *)
  • PARI
    isok(n) = isprime((3^(35*n)+5^(21*n)+7^(15*n)) % 105); \\ Michel Marcus, Aug 15 2013
    
  • PARI
    a(n)=n\4*12+[-4,0,4,6][n%4+1] \\ Charles R Greathouse IV, Dec 27 2013
    
  • PARI
    is(n)=n%=12;n==0||n==4||n==6||n==8 \\ Charles R Greathouse IV, Dec 27 2013
    
  • PARI
    a(n) = (-6-(-I)^n-I^n+6*n)/2 \\ Colin Barker, Oct 19 2015
    
  • PARI
    concat(0, Vec(2*x^2*(2*x^2-x+2)/((x-1)^2*(x^2+1)) + O(x^100))) \\ Colin Barker, Oct 19 2015

Formula

3n - 4 <= a(n) <= 3n - 2. - Charles R Greathouse IV, Dec 27 2013
From Colin Barker, Oct 19 2015: (Start)
a(n) = (-6 - (-i)^n - i^n + 6*n)/2, where i = sqrt(-1).
G.f.: 2*x^2*(2*x^2-x+2) / ((x-1)^2*(x^2+1)). (End)

Extensions

More terms from Michel Marcus, Aug 15 2013