A157932 Numbers k such that (3^(35*k) + 5^(21*k) + 7^(15*k)) mod 105 is prime.
0, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 72, 76, 78, 80, 84, 88, 90, 92, 96, 100, 102, 104, 108, 112, 114, 116, 120, 124, 126, 128, 132, 136, 138, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 174
Offset: 1
Examples
a(4) = 3^(35*4) + 5^(21*4) + 7^(15*4) mod 105 = 17 (prime).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Mathematica
Select[Range[0,180],PrimeQ[Mod[3^(35#)+5^(21#)+7^(15#),105]]&] (* Harvey P. Dale, Oct 10 2017 *)
-
PARI
isok(n) = isprime((3^(35*n)+5^(21*n)+7^(15*n)) % 105); \\ Michel Marcus, Aug 15 2013
-
PARI
a(n)=n\4*12+[-4,0,4,6][n%4+1] \\ Charles R Greathouse IV, Dec 27 2013
-
PARI
is(n)=n%=12;n==0||n==4||n==6||n==8 \\ Charles R Greathouse IV, Dec 27 2013
-
PARI
a(n) = (-6-(-I)^n-I^n+6*n)/2 \\ Colin Barker, Oct 19 2015
-
PARI
concat(0, Vec(2*x^2*(2*x^2-x+2)/((x-1)^2*(x^2+1)) + O(x^100))) \\ Colin Barker, Oct 19 2015
Formula
3n - 4 <= a(n) <= 3n - 2. - Charles R Greathouse IV, Dec 27 2013
From Colin Barker, Oct 19 2015: (Start)
a(n) = (-6 - (-i)^n - i^n + 6*n)/2, where i = sqrt(-1).
G.f.: 2*x^2*(2*x^2-x+2) / ((x-1)^2*(x^2+1)). (End)
Extensions
More terms from Michel Marcus, Aug 15 2013
Comments