A158034 Integers n for which f = (4^n - 2^n + 8n^2 - 2) / (2n * (2n + 1)) is an integer.
3, 11, 23, 83, 131, 179, 191, 239, 243, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 891, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1539, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2211, 2339, 2351, 2399, 2459, 2511, 2543, 2699, 2819, 2903
Offset: 1
Examples
ngon(f, k) = k * (f * (k - 1) / 2 - k + 2) . . . 3 = (4^3 - 2^3 + 8 * 9 - 2) / (6 * 7) . . . . = (2 * 28 + 70) / 42 . . 126 = (2 * 28 + 70) .. . 28 = (2^3 - 1) * 2^2 . . . . = 126 - 70 - 28 . . . . = 7 * (18 - 10 - 4) . . . . = 7 * (3 * 6 - 3 * 3 - 5) . . . . = 7 * (3 * 3 - 7 + 2) .. 8287 = (4^11 - 2^11 + 8 * 121 - 2) / (22 * 23) . . . . = (2 * 2096128 + 966) / 506 4193222 = (2 * 2096128 + 966) 2096128 = (2^11 - 1) * 2^10 . . . . = 4193222 - 2096128 - 966 . . . . = 23 * (182314 - 91136 - 42) . . . . = 23 * (8287 * 22 - 8287 * 11 - 21) . . . . = 23 * (8287 * 11 - 23 + 2) Coincidentally, 8287 = 129 * 64 + 31 = 257 * 32 + 63 is prime, and may be the largest value of f that is. 1031 = 257 * 4 + 3 and 2063 = 1031 * 2 + 1 are both members of this sequence, 4127 = 2063 * 2 + 1 is prime, and 8287 = (4127 + 16) * 2 + 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 112.
Crossrefs
Programs
-
Haskell
a158034 n = a158034_list !! (n-1) a158034_list = [x | x <- [1..], (4^x - 2^x + 8*x^2 - 2) `mod` (2*x*(2*x + 1)) == 0] -- Reinhard Zumkeller, Jan 12 2014
Comments