cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158046 Determinant of power series with alternate signs of gamma matrix with determinant 3!.

Original entry on oeis.org

6, -12, 294, -4800, 33006, -868476, 8045022, -133497600, 1840843662, -23069939772, 357884304366, -4506695659200, 65700186820638, -892588899692796, 12240418932523614, -172125321194572800, 2335747604463776238, -32681605781959208508, 448728077274231515214
Offset: 1

Views

Author

Keywords

Comments

a(n) = Determinant(A - A^2 + A^3 - A^4 + A^5 - ... - (-1)^n*A^n).
where A is the submatrix A(1..4,1..4) of the matrix with factorial determinant
A = [[1,1,1,1,1,1,...], [1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
a(n) is even with respect to signs of power of A.

Examples

			a(1) = Determinant(A) = 3! = 6.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    A:= Matrix([[1, 1, 1, 1], [1, 2, 1, 2], [1, 2, 3, 1], [1, 2, 3, 4]]):
    a:= n-> Determinant(add(A^i*(-1)^(i-1), i=1..n)):
    seq(a(n), n=1..30);
  • PARI
    vector(100, n, matdet(sum(k=1, n, [1,1,1,1 ; 1,2,1,2 ; 1,2,3,1 ; 1,2,3,4]^k*(-1)^(k-1)))) \\ Colin Barker, Jul 14 2014

Formula

Empirical g.f.: -6*x*(6*x^2 -1)*(46656*x^12 -190512*x^10 +60480*x^9 +243432*x^8 -21168*x^7 -100984*x^6 -3528*x^5 +6762*x^4 +280*x^3 -147*x^2 +1) / ((x -1)*(6*x -1)*(6*x^4 +22*x^3 +23*x^2 +10*x +1)*(216*x^4 +360*x^3 +138*x^2 +22*x +1)*(216*x^6 -828*x^5 +1284*x^4 -808*x^3 +214*x^2 -23*x +1)). - Colin Barker, Jul 14 2014

Extensions

More terms, and offset changed to 1 by Colin Barker, Jul 14 2014