cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158065 a(n) = 36*n + 1.

Original entry on oeis.org

37, 73, 109, 145, 181, 217, 253, 289, 325, 361, 397, 433, 469, 505, 541, 577, 613, 649, 685, 721, 757, 793, 829, 865, 901, 937, 973, 1009, 1045, 1081, 1117, 1153, 1189, 1225, 1261, 1297, 1333, 1369, 1405, 1441, 1477, 1513, 1549, 1585, 1621
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2009

Keywords

Comments

The identity (36*n + 1)^2 - (36*n^2 + 2*n)*6^2 = 1 can be written as a(n)^2 - A158064(n)*6^2 = 1. - Vincenzo Librandi, Feb 11 2012
Parametrize Pythagorean triangles with parameters a and b and side lengths x = b^2 - a^2, y = 2*a*b and z = a^2 + b^2. Generate one Pythagorean triangle with a=n-1 and b=n and side lengths (x1, y1, z1), and another one with a=n, b=n+1 and side lengths (x2, y2, z2). Then 2*a(n) = x2 - x1 + 12*(y2-y1) + 6*(z2-z1). - J. M. Bergot, Jul 16 2013

Crossrefs

Programs

Formula

G.f.: x*(37-x)/(1-x)^2. - Vincenzo Librandi, Feb 11 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 11 2012
a(n) = 12*A008585(n) + 1 (see illustration in links). - John Elias, Jun 29 2021