cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158107 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*L(n)*x^n/n ) where Sum_{n>=1} L(n)*x^n/n = log(1+x*A(x)).

Original entry on oeis.org

1, 1, 2, 7, 44, 272, 3053, 25670, 368728, 4867442, 86339238, 1071067999, 28751805809, 417861397848, 9791134239124, 235308903842756, 7238087265282704, 133575559401222741, 5068916834663575735
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 272*x^5 + 3053*x^6 +...
log(1+x*A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 1366*x^6/6 +...
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 147*x^4/4 + 1116*x^5/5 + 16392*x^6/6 +...
log(A(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 6*186*x^5/5 + 12*1366*x^6/6 +...
		

Crossrefs

Cf. A158108.

Programs

  • PARI
    {a(n)=local(A=1+x);if(n==0,1,for(i=1,n,A=exp(sum(m=1,n,sigma(m)*x^m*polcoeff(log(1+x*A+x*O(x^m)),m))+x*O(x^n)));polcoeff(A,n))}

Formula

G.f.: A(x) = Product_{n>=1} G_{n}(x^n) where G_{n}(x^n) = Product_{k=0..n-1} [1 + u^k*x * A(u^k*x)] with u = exp(2*Pi*I/n).

A158258 L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} Lucas(n)*a(n)*x^n/n) where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 1, 4, 21, 186, 2482, 52431, 1742069, 92198200, 7788221136, 1053871857226, 228795949744458, 79812945269217967, 44781474458725910347, 40447360752560508229164, 58848264986153917140728453
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Examples

			L.g.f.: A(x) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 2482*x^6/6 +...
exp(A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 44*x^5 + 458*x^6 + 7953*x^7 +...
exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158257 such that:
log(G(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 11*186*x^5/5 + 18*2482*x^6/6 +...
		

Crossrefs

Cf. A158257, A158108 (variant), A000204 (Lucas).

Programs

  • PARI
    {a(n)=local(A=x+x^2);if(n==0,1,for(i=1,n-1,A=log(1+x*exp(sum(m=1,n,(fibonacci(m-1)+fibonacci(m+1))*x^m*polcoeff(A+x*O(x^m),m) )+x*O(x^n))));n*polcoeff(A,n))}

Formula

L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158257.
exp(Sum_{n>=1} a(n)*x^n/n) = (1 + Sum_{n>=1} Lucas(n)*a(n)*x^n) / (1 + Sum_{n>=1} (Lucas(n)-1)*a(n)*x^n).
Showing 1-2 of 2 results.