A158116 Triangle T(n,k) = 6^(k*(n-k)), read by rows.
1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 6, 1; 1, 36, 36, 1; 1, 216, 1296, 216, 1; 1, 1296, 46656, 46656, 1296, 1; 1, 7776, 1679616, 10077696, 1679616, 7776, 1; 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
Mathematica
With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
PARI
T(n,k) = 6^(k*(n-k)); for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
-
Sage
flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Formula
T(n,k) = 6^(k*(n-k)). - Tom Edgar, Feb 20 2014
T(n,k) = (1/n)*(6^(n-k)*k*T(n-1,k-1) + 6^k*(n-k)*T(n-1,k)). - Tom Edgar, Feb 20 2014
From G. C. Greubel, Jun 30 2021: (Start)
T(n, k, m) = (m+2)^(k*(n-k)) with m = 4.
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 2. (End)
Extensions
Overall edit and new name by Tom Edgar and Joerg Arndt, Feb 21 2014