A158117 Triangle T(n, k) = 10^(k*(n-k)), read by rows.
1, 1, 1, 1, 10, 1, 1, 100, 100, 1, 1, 1000, 10000, 1000, 1, 1, 10000, 1000000, 1000000, 10000, 1, 1, 100000, 100000000, 1000000000, 100000000, 100000, 1, 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 10, 1; 1, 100, 100, 1; 1, 1000, 10000, 1000, 1; 1, 10000, 1000000, 1000000, 10000, 1; 1, 100000, 100000000, 1000000000, 100000000, 100000, 1; 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[10^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
Mathematica
(* First program *) T[n_, k_, q_]= Binomial[q+2,2](k*(n-k)); Table[T[n,k,3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *) (* Second program *) With[{m=8}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
Sage
flatten([[10^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Formula
T(n, k, q) = c(n,q)/(c(k,q)*c(n-k,q)) where c(n, k) = binomial(q+2, 2)^binomial(n+1, 2), c(n, 0) = n!, and q = 3.
T(n, k, q) = binomial(q+2, 2)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 8. - G. C. Greubel, Jun 30 2021
Extensions
Edited by G. C. Greubel, Jun 30 2021