cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158119 Unsigned bisection of A157308 and A157310.

Original entry on oeis.org

1, 1, 3, 38, 947, 37394, 2120190, 162980012, 16330173251, 2070201641498, 324240251016266, 61525045423103316, 13913915097436287598, 3698477457114061621492, 1141824214469896983332508
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 38*x^3 + 947*x^4 + 37394*x^5 + 2120190*x^6 + 162980012*x^7 + 16330173251*x^8 + 2070201641498*x^9 + 324240251016266*x^10 +...
RELATED FUNCTIONS.
G.f. of A157308, B(x) = x + A(-x^2), satisfies the condition
that both B(x) and F(x) = B(x*F(x)) = o.g.f. of A155585
have zeros for every other coefficient after initial terms:
A157308 = [1,1,-1,0,3,0,-38,0,947,0,-37394,0,2120190,0,...];
A155585 = [1,1,0,-2,0,16,0,-272,0,7936,0,-353792,0,...].
...
G.f. of A157310, C(x) = 2+x - A(-x^2), satisfies the condition
that both C(x) and G(x) = C(x/G(x)) = o.g.f. of A157309
have zeros for every other coefficient after initial terms:
A157310 = [1,1,1,0,-3,0,38,0,-947,0,37394,0,-2120190,0,...];
A157309 = [1,1,0,-1,0,9,0,-176,0,5693,0,-272185,0,...].
...
		

Crossrefs

Programs

  • Mathematica
    terms = 30;
    F[x_] = Sum[n! x^n/Product[(1 + 2 k x), {k, 1, n}], {n, 0, terms+1}] + O[x]^(terms+1);
    A[x_] = x/InverseSeries[x F[x]];
    Partition[CoefficientList[A[x], x][[1 ;; terms]], 2][[All, 1]] // Abs (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, 2*n, if(#A%2==0, A=concat(A, 0);); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); (-1)^n*Vec(x/serreverse(x*Ser(A)))[2*n+1]}
    
  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 04 2020

Formula

G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^2*x/(A(x) - 3^2*x/(A(x) - 4^2*x/(A(x) - 5^2*x/(A(x) - 6^2*x/(A(x) - ...)))))), a continued fraction. - Paul D. Hanna, Nov 04 2020
Conjecture: a(m) == 1 (mod 2) iff m is a power of 2 or m=0. [Paul D. Hanna, Mar 16 2009]
a(n) ~ 2^(4*n + 3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020