cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158198 Triangle T(n, k) = Sum_{j=0..k-1} (-1)^j*binomial(k, j+1)*(k-j)^(n-k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 16, 5, 1, 1, 31, 58, 25, 6, 1, 1, 63, 196, 125, 36, 7, 1, 1, 127, 634, 601, 216, 49, 8, 1, 1, 255, 1996, 2765, 1296, 343, 64, 9, 1, 1, 511, 6178, 12265, 7656, 2401, 512, 81, 10, 1, 1, 1023, 18916, 52925, 44136, 16807, 4096, 729, 100, 11, 1
Offset: 1

Views

Author

Thomas J Engelsma (tom(AT)opertech.com), Mar 13 2009

Keywords

Examples

			Triangle begins
  1;
  1,   1;
  1,   3,    1;
  1,   7,    4,    1;
  1,  15,   16,    5,    1;
  1,  31,   58,   25,    6,   1;
  1,  63,  196,  125,   36,   7,  1;
  1, 127,  634,  601,  216,  49,  8, 1;
  1, 255, 1996, 2765, 1296, 343, 64, 9, 1;
a(8,4) = 1*4*4^4 - 1*6*3^4 + 1*4*2^4 - 1*1*1^4 = 1024 - 486 + 64 - 1 = 601.
		

Crossrefs

Column 2 is A000225, column 3 is A168583. - Michel Marcus, Jun 19 2013

Programs

  • Magma
    [(&+[(-1)^j*Binomial(k, j+1)*(k-j)^(n-k): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Jun 26 2021
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[k, j+1]*(k-j)^(n-k), {j, 0, k-1}], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jun 26 2021 *)_
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(i=0, k-1, (-1)^i*binomial(k,i+1)*(k-i)^(n-k)), ", ");); print(););} \\ Michel Marcus, Jun 19 2013
    
  • Sage
    flatten([[ sum( (-1)^j*binomial(k, j+1)*(k-j)^(n-k) for j in (0..k-1)) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 26 2021

Formula

T(n, k) = Sum_{j=0..k-1} (-1)^j*binomial(k, j+1)*(k-j)^(n-k).