A158198 Triangle T(n, k) = Sum_{j=0..k-1} (-1)^j*binomial(k, j+1)*(k-j)^(n-k), read by rows.
1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 16, 5, 1, 1, 31, 58, 25, 6, 1, 1, 63, 196, 125, 36, 7, 1, 1, 127, 634, 601, 216, 49, 8, 1, 1, 255, 1996, 2765, 1296, 343, 64, 9, 1, 1, 511, 6178, 12265, 7656, 2401, 512, 81, 10, 1, 1, 1023, 18916, 52925, 44136, 16807, 4096, 729, 100, 11, 1
Offset: 1
Examples
Triangle begins 1; 1, 1; 1, 3, 1; 1, 7, 4, 1; 1, 15, 16, 5, 1; 1, 31, 58, 25, 6, 1; 1, 63, 196, 125, 36, 7, 1; 1, 127, 634, 601, 216, 49, 8, 1; 1, 255, 1996, 2765, 1296, 343, 64, 9, 1; a(8,4) = 1*4*4^4 - 1*6*3^4 + 1*4*2^4 - 1*1*1^4 = 1024 - 486 + 64 - 1 = 601.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
[(&+[(-1)^j*Binomial(k, j+1)*(k-j)^(n-k): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Jun 26 2021
-
Mathematica
Table[Sum[(-1)^j*Binomial[k, j+1]*(k-j)^(n-k), {j, 0, k-1}], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jun 26 2021 *)_
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(i=0, k-1, (-1)^i*binomial(k,i+1)*(k-i)^(n-k)), ", ");); print(););} \\ Michel Marcus, Jun 19 2013
-
Sage
flatten([[ sum( (-1)^j*binomial(k, j+1)*(k-j)^(n-k) for j in (0..k-1)) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 26 2021
Formula
T(n, k) = Sum_{j=0..k-1} (-1)^j*binomial(k, j+1)*(k-j)^(n-k).