cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158275 Denominators of antiharmonic means of divisors of n.

Original entry on oeis.org

1, 3, 2, 1, 3, 6, 4, 3, 1, 9, 6, 2, 7, 12, 6, 1, 9, 3, 10, 1, 8, 18, 12, 6, 1, 21, 2, 4, 15, 18, 16, 3, 12, 27, 12, 1, 19, 6, 14, 9, 21, 24, 22, 2, 3, 36, 24, 2, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Numbers k such that sigma_2(k)/sigma_1(k) = A001157(k)/A000203(k) are integers are in A020487.

Examples

			Antiharmonic means of divisors of n>=1: 1, 5/3, 5/2, 3, 13/2, 25/6, ...
		

Crossrefs

Cf. A001157, A000203, A020487, A158274 (numerators).

Programs

  • Mathematica
    Table[Denominator[DivisorSigma[2, n]/DivisorSigma[1, n]], {n, 50}] (* Ivan Neretin, May 22 2015 *)
  • PARI
    a(n) = denominator(sigma(n,2)/sigma(n)); \\ Amiram Eldar, Nov 21 2022

Formula

Antiharmonic mean of divisors of number n = Product (p_i^e_i) is sigma_2(n)/sigma_1(n) = A001157(n)/A000203(n) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
a(A020487(n)) = 1. - Amiram Eldar, Nov 21 2022

A379812 a(n) = sigma_1(n) * sigma_2(n).

Original entry on oeis.org

1, 15, 40, 147, 156, 600, 400, 1275, 1183, 2340, 1464, 5880, 2380, 6000, 6240, 10571, 5220, 17745, 7240, 22932, 16000, 21960, 12720, 51000, 20181, 35700, 32800, 58800, 25260, 93600, 30784, 85995, 58560, 78300, 62400, 173901, 52060, 108600, 95200, 198900, 70644
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 2}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 2);}

Formula

a(n) = A000203(n) * A001157(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(2*e+2)-1) / ((p-1) * (p^2-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) / zeta(2*s-3).
In general, Dirichlet g.f. of sigma_i(n) * sigma_j(n): zeta(s) * zeta(s-i) * zeta(s-j) * zeta(s-i-j) / zeta(2*s-i-j) (Ramanujan, 1916).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2) * zeta(3) * zeta(4) / zeta(5) = zeta(3) * Pi^6 / (540*zeta(5)) = 2.06386841111121962734... .
In general, Sum_{k=1..n} sigma_i(k) * sigma_j(k) ~ c(i,j) * n^(i+j+1) / (i+j+1), for i, j >= 1, where c(i,j) = zeta(i+1) * zeta(j+1) * zeta(i+j+1) / zeta(i+j+2).
G.f.: Sum_{k>=1} Sum_{l>=1} k*l^2*x^lcm(k, l)/(1 - x^lcm(k, l)). - Miles Wilson, Jul 10 2025

A176803 a(n) = the smallest natural numbers m such that product of antiharmonic mean of the divisors of n and antiharmonic mean of the divisors of m are integers, a(n) = 0 if no such number exists.

Original entry on oeis.org

1, 4, 0, 1, 4, 0, 0, 4, 1, 100, 0, 0, 9, 0, 0, 1, 100, 4, 0, 1, 0, 0, 0, 0, 1, 25, 0, 0, 325, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

Comments

Antiharmonic mean of the divisors of number n is rational number b(n) = A001157(n) / A000203(n) = A158274(n) / A158275(n). a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A020487: a(A020487(n)) = 1. a(n) = 1 iff A158275(n) = 1. a(n) = 0 for infinitely many n. a(n) = 0 for even A158275(n).

Examples

			For n = 10; b(10) = 65/9, a(n) = 100 because b(100) = 63; 65/9 * 63 = 455 (integer).
		
Showing 1-3 of 3 results.