A158274 Numerators of antiharmonic means of divisors of n.
1, 5, 5, 3, 13, 25, 25, 17, 7, 65, 61, 15, 85, 125, 65, 11, 145, 35, 181, 13, 125, 305, 265, 85, 21, 425, 41, 75, 421, 325, 481, 65, 305, 725, 325, 21, 685, 181, 425, 221, 841, 625, 925, 61, 91, 1325, 1105, 55, 43, 35
Offset: 1
Examples
Antiharmonic means of divisors of n>=1: 1, 5/3, 5/2, 3, 13/2, 25/6, ...
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Numerator[DivisorSigma[2, n]/DivisorSigma[1, n]], {n, 50}] (* Ivan Neretin, May 22 2015 *)
-
PARI
a(n) = numerator(sigma(n,2)/sigma(n)); \\ Amiram Eldar, Nov 21 2022
Formula
Antiharmonic mean of divisors of number n = Product (p_i^e_i) is sigma_2(n)/sigma_1(n) = A001157(n)/A000203(n) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
Sum_{k=1..n} a(k)/A158275(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (3*p-2)/(p^3)) = A152649 * A065473 = 0.387941... . - Amiram Eldar, Nov 21 2022
Comments