cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327055 Numbers m such that the arithmetic mean and the quadratic mean (the root mean square) of the divisors of m are both integers.

Original entry on oeis.org

1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1

Views

Author

Jaroslav Krizek, Oct 07 2019

Keywords

Comments

Numbers m such that A000203(m) / A000005(m) and sqrt(A001157(m) / A000005(m)) are both integers.
Intersection of A003601 and A140480.
Sequence deviates from A140480 (RMS numbers); first deviation is at a(461), a(461) = 2226133343. Number A140480(461) = 2217231104 is the first RMS number that are not arithmetic (see A327056 for such numbers).
Corresponding values of A000203(a(n)) / A000005(a(n)): 1, 4, 21, 120, 84, 480, 504, 1056, 1512, 2520, 1110, 2016, 4158, ...
Corresponding values of sqrt(A001157(a(n)) / A000005(a(n))): 1, 5, 29, 169, 145, 845, 1105, 2405, 3445, 4901, 2665, 5525, ... (sequence deviates from A141812).

Examples

			Number 41 is a term because sigma(41) / tau(41) = 42 / 2 = 21 and sqrt((1^2 + 41^2)  / tau(41) ) = sqrt(1682 /  2) = 29.
Values of means of the first RMS number 2217231104 that is not in the sequence: 418652080/9 (noninteger) and 247511537 (integer).
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]
  • Mathematica
    aQ[n_] := IntegerQ[DivisorSigma[1, n]/(d = DivisorSigma[0, n])] && IntegerQ @ Sqrt[DivisorSigma[2, n]/d]; Select[Range[10^5], aQ] (* Amiram Eldar, Oct 07 2019 *)

A158298 Denominators of averages of squares of the divisors of n.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 1, 1, 2, 1, 5, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 3, 7, 1, 2, 1, 1, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 5, 5, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Average of squares of the divisors of n = A001157(n)/A000005(n).
Iff a(n) = 1, n is in A020486.

Crossrefs

Cf. A001157, A000005, A020486, A158299 (for numerators).

Programs

  • Mathematica
    Array[Denominator[DivisorSigma[2, #]/DivisorSigma[0, #]] &, 100] (* Amiram Eldar, Jul 15 2019 *)
  • PARI
    a(n) = denominator(sigma(n, 2)/numdiv(n)) \\ Michel Marcus, Jun 13 2013

Extensions

Data corrected and extended by Amiram Eldar, Jul 15 2019
Showing 1-2 of 2 results.