A158336 A triangle of matrix polynomials: m(n)=antisymmeticmatix(n).pseudotranspose[antisymmeticmatix(n)].
1, 0, -1, -1, 0, 1, 0, 9, 0, -1, 1, 0, -34, 0, 1, 0, -25, 0, 90, 0, -1, -1, 0, 195, 0, -195, 0, 1, 0, 49, 0, -931, 0, 371, 0, -1, 1, 0, -644, 0, 3334, 0, -644, 0, 1, 0, -81, 0, 4788, 0, -9846, 0, 1044, 0, -1, -1, 0, 1605, 0, -25290, 0, 25290, 0, -1605, 0, 1
Offset: 0
Examples
{1}, {0, -1}, {-1, 0, 1}, {0, 9, 0, -1}, {1, 0, -34, 0, 1}, {0, -25, 0, 90, 0, -1}, {-1, 0, 195, 0, -195, 0, 1}, {0, 49, 0, -931, 0, 371, 0, -1}, {1, 0, -644, 0, 3334, 0, -644, 0, 1}, {0, -81, 0, 4788, 0, -9846, 0, 1044, 0, -1}, {-1, 0, 1605, 0, -25290, 0, 25290, 0, -1605, 0, 1}
Crossrefs
Programs
-
Mathematica
Clear[M, T, d, a, x, a0]; pt[a_] := Reverse[IdentityMatrix[Length[a]]].a; T[n_, m_, d_] := If[ m < n, (-1)^(n + m), If[m > n, -(-1)^(n + m), 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].pt[Table[T[ n, m, d], {n, 1, d}, {m, 1, d}]]; Table[Det[M[d]], {d, 1, 10}]; Table[M[d], {d, 1, 10}] Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Expand[CharacteristicPolynomial[M[ n], x]], x], {n, 1, 10}]]; Flatten[a]; Join[{1}, Table[Apply[Plus, CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];
Formula
m(n)=antisymmeticmatix(n).pseudotranspose[antisymmeticmatix(n)].;
out_(n,m)=coefficients(characteristicpolynomial(m(n),x),x).
Comments