cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145511 Dirichlet g.f.: (1-2/2^s+7/4^s)*zeta(s)^3.

Original entry on oeis.org

1, 1, 3, 7, 3, 3, 3, 19, 6, 3, 3, 21, 3, 3, 9, 37, 3, 6, 3, 21, 9, 3, 3, 57, 6, 3, 10, 21, 3, 9, 3, 61, 9, 3, 9, 42, 3, 3, 9, 57, 3, 9, 3, 21, 18, 3, 3, 111, 6, 6, 9, 21, 3, 10, 9, 57, 9, 3, 3, 63, 3, 3, 18, 91, 9, 9, 3, 21, 9, 9, 3, 114, 3, 3, 18, 21, 9, 9, 3, 111, 15, 3, 3, 63, 9, 3, 9, 57, 3, 18, 9
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2009

Keywords

Comments

Dirichlet convolution of [1,-2,0,7,0,0,0,0,...] and A007425. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    read("transforms") :
    nmax := 100 :
    L := [1,-2,0,7,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := 3*(e - 1)*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    up_to = 65537;
    t1 = direuler(p=2, up_to, 1/(1-X)^3);
    t3 = direuler(p=2, 2, 1-2*X^1+7*X^2, up_to);
    v145511 = dirmul(t1, t3);
    A145511(n) = v145511[n]; \\ Antti Karttunen, Sep 27 2018, after R. J. Mathar's PARI-code for A158327
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 3*(f[i,2]-1)*f[i,2]+1, (f[i,2]+1)*(f[i,2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022

Formula

From Amiram Eldar, Oct 25 2022: (Start)
Multiplicative with a(2^e) = 3*(e-1)*e+1 and a(p^e) = (e+1)*(e+2)/2 if p > 2.
Sum_{k=1..n} a(k) ~ (7/8)*n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 21*gamma/4 - 5*log(2)/2 - 7/4 and c_2 = 7/4 + 21*gamma*(gamma-1)/4 - 15*gamma*log(2)/2 - 21*gamma_1/4 + 5*log(2)/2 + 3*log(2)^2, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End)

A158327 a(n) = A145444(n)-A145511(n).

Original entry on oeis.org

0, 2, 0, 2, 0, 6, 0, 2, 0, 6, 0, 6, 0, 6, 0, 2, 0, 12, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 18, 0, 2, 0, 6, 0, 12, 0, 6, 0, 6, 0, 18, 0, 6, 0, 6, 0, 6, 0, 12, 0, 6, 0, 20, 0, 6, 0, 6, 0, 18, 0, 6, 0, 2, 0, 18, 0, 6, 0, 18, 0, 12, 0, 6, 0, 6, 0, 18, 0, 6, 0, 6, 0, 18, 0, 6, 0, 6, 0, 36, 0, 6, 0, 6, 0, 6, 0, 12, 0
Offset: 1

Views

Author

Paul Curtz, Mar 16 2009

Keywords

Crossrefs

Programs

  • PARI
    t1=direuler(p=2, 200, 1/(1-X)^3) ; t2=direuler(p=2, 2, 1+3*X^2+2*X^3, 200) ; a444=dirmul(t1, t2) ; t3=direuler(p=2, 2, 1-2*X^1+7*X^2, 200) ; a511=dirmul(t1, t3); a444-a511 ; print(%) ; \\ R. J. Mathar, Apr 22 2009

Extensions

More terms from R. J. Mathar, Apr 22 2009
Showing 1-2 of 2 results.