cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158443 a(n) = 16*n^2 - 4.

Original entry on oeis.org

12, 60, 140, 252, 396, 572, 780, 1020, 1292, 1596, 1932, 2300, 2700, 3132, 3596, 4092, 4620, 5180, 5772, 6396, 7052, 7740, 8460, 9212, 9996, 10812, 11660, 12540, 13452, 14396, 15372, 16380, 17420, 18492, 19596, 20732, 21900, 23100, 24332, 25596, 26892, 28220, 29580
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (8*n^2 - 1)^2 - (16*n^2 - 4) *(2*n)^2 = 1 can be written as A157914(n)^2 - a(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 12, in the direction 12, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

  • Magma
    I:=[12, 60, 140]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    16Range[60]^2-4  (* Harvey P. Dale, Mar 18 2011 *)
  • PARI
    a(n) = 16*n^2 - 4.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 4*x*(3+6*x-x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi-2)/16. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x^2 + 4*x - 1) + 1).
a(n) = 4*A000466(n). (End)