cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158446 a(n) = 25*n^2 - 5.

Original entry on oeis.org

20, 95, 220, 395, 620, 895, 1220, 1595, 2020, 2495, 3020, 3595, 4220, 4895, 5620, 6395, 7220, 8095, 9020, 9995, 11020, 12095, 13220, 14395, 15620, 16895, 18220, 19595, 21020, 22495, 24020, 25595, 27220, 28895, 30620, 32395, 34220, 36095, 38020, 39995, 42020, 44095
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (10*n^2 - 1)^2 - (25*n^2 - 5)*(2*n)^2 = 1 can be written as A158447(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[20, 95, 220]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[25n^2-5,{n,50}]
    LinearRecurrence[{3,-3,1},{20,95,220},40] (* Harvey P. Dale, May 05 2019 *)
  • PARI
    a(n) = 25*n^2 - 5.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 5*x*(4+7*x-x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(5))*Pi/sqrt(5))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(5))*Pi/sqrt(5) - 1)/10. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 5*(exp(x)*(5*x^2 + 5*x - 1) + 1).
a(n) = 5*A134538(n). (End)