A158464 Number of distinct squares in row n of Pascal's triangle.
1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0
Keywords
Examples
a(8) = #{1} = 1; a(9) = #{1,9,36} = 3.
Links
Programs
-
Maple
A158464 := proc(n) local sqset,k ; sqset := {} ; for k from 0 to n do P := binomial(n,k) ; if issqr(P) then sqset := sqset union {P} ; end if; end do: nops(sqset) ; end proc: seq(A158464(n),n=0..120) ; # R. J. Mathar, Jul 09 2016
-
Mathematica
CountDistinct /@ Table[Sqrt@ Binomial[n, k] /. k_ /; ! IntegerQ@ k -> Nothing, {n, 0, 104}, {k, 0, n}] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
A158464(n) = sum(k=0,n\2,issquare(binomial(n,k))); \\ Antti Karttunen, Nov 03 2017
Extensions
More terms from Antti Karttunen, Nov 03 2017
Comments