A158482 a(n) = 14*n^2 + 1.
15, 57, 127, 225, 351, 505, 687, 897, 1135, 1401, 1695, 2017, 2367, 2745, 3151, 3585, 4047, 4537, 5055, 5601, 6175, 6777, 7407, 8065, 8751, 9465, 10207, 10977, 11775, 12601, 13455, 14337, 15247, 16185, 17151, 18145, 19167, 20217, 21295, 22401
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[15, 57, 127]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{15,57,127},50]
-
PARI
a(n) = 14*n^2+1;
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(15+12*x+x^2)/(1-x)^3.
From Amiram Eldar, Feb 05 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 - (Pi/sqrt(14))*coth(Pi/sqrt(14)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(14))*csch(Pi/sqrt(14)))/2.
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(14))*sinh(Pi/sqrt(7)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(14))*csch(Pi/sqrt(14)). (End)
Comments