cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A195020 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [3, 4, 5]. The edges of the spiral have length A195019.

Original entry on oeis.org

0, 3, 7, 13, 21, 30, 42, 54, 70, 85, 105, 123, 147, 168, 196, 220, 252, 279, 315, 345, 385, 418, 462, 498, 546, 585, 637, 679, 735, 780, 840, 888, 952, 1003, 1071, 1125, 1197, 1254, 1330, 1390, 1470, 1533, 1617, 1683, 1771, 1840, 1932, 2004, 2100
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011 - Sep 12 2011

Keywords

Comments

Zero together with the partial sums of A195019.
The spiral contains infinitely many Pythagorean triples in which the hypotenuses on the main diagonal are the positives A008587. The vertices on the main diagonal are the numbers A024966 = (3+4)*A000217 = 7*A000217, where both 3 and 4 are the first two edges in the spiral. The distance "a" between nearest edges that are perpendicular to the initial edge of the spiral is 3, while the distance "b" between nearest edges that are parallel to the initial edge is 4, so the distance "c" between nearest vertices on the same axis is 5 because from the Pythagorean theorem we can write c = (a^2+b^2)^(1/2) = sqrt(3^2+4^2) = sqrt(9+16) = sqrt(25) = 5.
Let an array have m(0,n)=m(n,0)=n*(n-1)/2 and m(n,n)=n*(n+1)/2. The first n+1 terms in row(n) are the numbers in the closed interval m(0,n) to m(n,n). The terms in column(n) are the same from m(n,0) to m(n,n). The first few antidiagonals are 0; 0,0; 1,1,1; 3,2,2,3; 6,4,3,4,6; 10,7,5,5,7,10. a(n) is the difference between the sum of the terms in the n+1 X n+1 matrices and those in the n X n matrices. - J. M. Bergot, Jul 05 2013 [The first five rows are: 0,0,1,3,6; 0,1,2,4,7; 1,2,3,5,8; 3,4,5,6,9; 6,7,8,9,10]

Crossrefs

Programs

  • Magma
    [(2*n*(7*n+13)+(2*n-5)*(-1)^n+5)/16: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
  • Mathematica
    With[{r = Range[50]}, Join[{0}, Accumulate[Riffle[3*r, 4*r]]]] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 13, 21}, 100] (* Paolo Xausa, Feb 09 2024 *)

Formula

From Bruno Berselli, Oct 13 2011: (Start)
G.f.: x*(3+4*x)/((1+x)^2*(1-x)^3).
a(n) = (1/2)*A004526(n+2)*A047335(n+1) = (2*n*(7*n+13) + (2*n-5)*(-1)^n+5)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) - a(n-2) = A047355(n+1). (End)

A193053 a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.

Original entry on oeis.org

1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0

Views

Author

Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

For an origin of this sequence, see the numerical spiral illustrated in the Links section.

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).

Programs

  • Magma
    [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
  • Mathematica
    Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
  • PARI
    for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
    

Formula

O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017
a(n) = A195020(n) + n + 1.
a(n) - a(-n-1) = A047336(n+1).
a(n+1) - a(-n) = A113804(n+1).
a(n+2) - a(n) = A047385(n+3).
a(n+4) - a(n) = A113803(n+4).
a(2*n) + a(2*n-1) = A069127(n+1).
a(2*n) - a(2*n-1) = A016813(n).
a(2*n+1) - a(2*n) = A016777(n+1).
a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

A198017 a(n) = n*(7*n + 11)/2 + 1.

Original entry on oeis.org

1, 10, 26, 49, 79, 116, 160, 211, 269, 334, 406, 485, 571, 664, 764, 871, 985, 1106, 1234, 1369, 1511, 1660, 1816, 1979, 2149, 2326, 2510, 2701, 2899, 3104, 3316, 3535, 3761, 3994, 4234, 4481, 4735, 4996, 5264, 5539, 5821, 6110, 6406, 6709, 7019, 7336, 7660, 7991
Offset: 0

Views

Author

Bruno Berselli, Oct 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

First bisection of A193053 (see also the numerical spiral illustrated in the Links section).
The inverse binomial transform yields 1, 9, 7, 0, 0 (0 continued).

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).
Cf. A017005 (first differences).

Programs

  • Magma
    [n*(7*n+11)/2+1: n in [0..47]];
  • Mathematica
    Table[(n(7n+11))/2+1,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{1,10,26},60] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    for(n=0, 47, print1(n*(7*n+11)/2+1", "));
    

Formula

G.f.: (1 + 7*x - x^2)/(1-x)^3.
a(n) = A195020(2*n) + 2*n + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = 2*a(n-1) - a(n-2) + 7.
From Elmo R. Oliveira, Dec 24 2024: (Start)
E.g.f.: exp(x)*(2 + 18*x + 7*x^2)/2.
a(n) = n + A001106(n+1). (End)

A158481 a(n) = 49*n^2 + 7.

Original entry on oeis.org

56, 203, 448, 791, 1232, 1771, 2408, 3143, 3976, 4907, 5936, 7063, 8288, 9611, 11032, 12551, 14168, 15883, 17696, 19607, 21616, 23723, 25928, 28231, 30632, 33131, 35728, 38423, 41216, 44107, 47096, 50183, 53368, 56651, 60032, 63511, 67088, 70763, 74536, 78407
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2 + 1)^2 - (49*n^2 + 7)*(2*n)^2 = 1 can be written as A158482(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[56, 203, 448];[n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{56,203,448},40]
  • PARI
    a(n)=49*n^2+7.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 7*x*(8+5*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(7))*Pi/sqrt(7) - 1)/14.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(7))*Pi/sqrt(7))/14. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 7*(exp(x)*(7*x^2 + 7*x + 1) - 1).
a(n) = 7*A247541(n). (End)

A158660 a(n) = 56*n^2 + 1.

Original entry on oeis.org

1, 57, 225, 505, 897, 1401, 2017, 2745, 3585, 4537, 5601, 6777, 8065, 9465, 10977, 12601, 14337, 16185, 18145, 20217, 22401, 24697, 27105, 29625, 32257, 35001, 37857, 40825, 43905, 47097, 50401, 53817, 57345, 60985, 64737, 68601, 72577, 76665, 80865, 85177, 89601
Offset: 0

Views

Author

Vincenzo Librandi, Mar 23 2009

Keywords

Comments

The identity (56*n^2 + 1)^2 - (784*n^2 + 28)*(2*n)^2 = 1 can be written as a(n)^2 - A158659(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[1, 57, 225]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 57, 225}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
    56 Range[0,40]^2+1 (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    for(n=0, 40, print1(56*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 17 2012

Formula

G.f.: -(1 + 54*x + 57*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(14)))*Pi/(2*sqrt(14)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(14)))*Pi/(2*sqrt(14)) + 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(1 + 56*x + 56*x^2).
a(n) = A158482(2*n) for n > 0. (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009

A010018 a(0) = 1, a(n) = 28*n^2 + 2 for n>0.

Original entry on oeis.org

1, 30, 114, 254, 450, 702, 1010, 1374, 1794, 2270, 2802, 3390, 4034, 4734, 5490, 6302, 7170, 8094, 9074, 10110, 11202, 12350, 13554, 14814, 16130, 17502, 18930, 20414, 21954, 23550, 25202, 26910, 28674, 30494, 32370, 34302, 36290, 38334, 40434, 42590, 44802
Offset: 0

Views

Author

Keywords

Comments

First bisection of A005919. - Bruno Berselli, Feb 07 2012
a(n) = the second level of difference between the sum of the terms in the n+1 X n+1 matrices and those in the n X n matrices starting at n=1 for an array constructed by using the terms in A016813 as the antidiagonals; the first few antidiagonals are 1; 5,9; 13,17,21; 25,29,33,37. - J. M. Bergot, Jul 05 2013
[More formally: (sum[m(n+1),j {j=0..n+1}]+sum[m(i,n+1) {i=0..n}]) - (sum[m(n,j) {j=0...n}] + sum[m(i,n) {i=0..n-1}])=a(n)]
[The first five rows begin: 1,9,21,37,57; 5,17,33,53,77; 13,29,49,73,101;25,45,69,97,129; 41,65,93,125,161]

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 28 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    LinearRecurrence[{3, -3, 1}, {1, 30, 114, 254}, 40] (* Robert G. Wilson v, Jul 06 2013 *)

Formula

G.f.: (1+x)*(1+26*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*28+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(14)/56*Pi*coth(Pi/sqrt 14) = 1.05615979263340... - R. J. Mathar, May 07 2024
a(n) = 2*A158482(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195314(n)+A195314(n+1). - R. J. Mathar, May 07 2024
Showing 1-6 of 6 results.