cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A001106 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.

Original entry on oeis.org

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the parallel line from 1, in the direction 1, 24, ..., in the square spiral whose vertices are the generalized 9-gonal (enneagonal) numbers A118277. Also sequence found by reading the same lines in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and x+y <= n. - Reinhard Zumkeller, Jan 23 2012
Partial sums give A007584. - Omar E. Pol, Jan 15 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=2). Partial sums of A016993.

Programs

  • Haskell
    a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Haskell
    a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
    
  • Mathematica
    Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 7, y + 7
    A001106 = aList()
    print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = (7*n - 5)*n/2.
G.f.: x*(1+6*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = n + 7*A000217(n-1). - Floor van Lamoen, Oct 14 2005
Starting (1, 9, 24, 46, 75, ...) gives the binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
Row sums of triangle A131875 starting (1, 9, 24, 46, 75, 111, ...). A001106 = binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 9. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 7. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 7*n - 6 (with a(0) = 0). - Vincenzo Librandi, Nov 12 2010
a(n) = A174738(7n). - Philippe Deléham, Mar 26 2013
a(7*a(n) + 22*n + 1) = a(7*a(n) + 22*n) + a(7*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 7*x)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n+2) + A000217(n) = (2*n+3)^2. - Ezhilarasu Velayutham, Mar 18 2020
Product_{n>=2} (1 - 1/a(n)) = 7/9. - Amiram Eldar, Jan 21 2021
Sum_{n>=1} 1/a(n) = A244646. - Amiram Eldar, Nov 12 2021
a(n) = A000217(3*n-2) - (n-1)^2. - Charlie Marion, Feb 27 2022
a(n) = 3*A000217(n) + 2*A005563(n-2). In general, if P(k,n) = the n-th k-gonal number, then P(m*k,n) = m*P(k,n) + (m-1)*A005563(n-2). - Charlie Marion, Feb 21 2023

A195019 Multiples of 3 and of 4 interleaved: a(2*n-1) = 3*n, a(2*n) = 4*n.

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 12, 16, 15, 20, 18, 24, 21, 28, 24, 32, 27, 36, 30, 40, 33, 44, 36, 48, 39, 52, 42, 56, 45, 60, 48, 64, 51, 68, 54, 72, 57, 76, 60, 80, 63, 84, 66, 88, 69, 92, 72, 96, 75, 100, 78, 104, 81, 108, 84, 112, 87, 116, 90, 120, 93, 124, 96, 128
Offset: 1

Views

Author

Omar E. Pol, Sep 07 2011, Sep 12 2011

Keywords

Comments

First differences of A195020.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [3, 4, 5]. The spiral contains infinitely many Pythagorean triples in which the hypotenuses are the positives A008587. Zero together with partial sums give A195020; the vertices of the spiral.

Crossrefs

Programs

  • Magma
    [((n-3)*(-1)^n+7*n+3)/4: n in [1..60]]; // Vincenzo Librandi, Sep 12 2011
  • Mathematica
    Table[((n-3)*(-1)^n + 7*n + 3)/4, {n,1,50}] (* G. C. Greubel, Aug 19 2017 *)
  • PARI
    a(n)=(n+1)\2*(4-n%2)  \\ M. F. Hasler, Sep 08 2011
    

Formula

pair(3*n, 4*n).
a(2*n-1) = 3*n, a(2*n) = 4*n. - M. F. Hasler, Sep 08 2011
G.f.: x*(3+4*x) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Sep 09 2011
From Bruno Berselli, Sep 12 2011: (Start)
a(n) = ((n-3)*(-1)^n + 7*n + 3)/4.
a(n) + a(n+1) = A047355(n+2). (End)
E.g.f.: (1/4)*((3 + 7*x)*exp(x) - (3 + x)*exp(-x)). - G. C. Greubel, Aug 19 2017

A022264 a(n) = n*(7*n - 1)/2.

Original entry on oeis.org

0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., and the parallel line from 3, in the direction 3, 30, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 09 2011

Crossrefs

Cf. sequences listed in A254963.
Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = C(7*n,2)/7, n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = A049450(n) + A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = 7*n + a(n-1) - 4 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = (2*n)^2 - n*(n+1)/2 = A016742(n) - A000217(n). - Philippe Deléham, Mar 08 2013
a(n) = A174738(7*n+2). - Philippe Deléham, Mar 26 2013
G.f.: x*(3 + 4*x)/(1 - x)^3. - R. J. Mathar, Aug 04 2016
a(n) = A000217(4*n-1) - A000217(3*n-1). - Bruno Berselli, Oct 17 2016
a(n) = (1/5) * Sum_{i=n..(6*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
E.g.f.: (1/2)*x*(7*x + 6)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = A005449(n) + A000384(n). See Crysta-gons illustration. - Leo Tavares, Nov 21 2021

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A024966 7 times triangular numbers: 7*n*(n+1)/2.

Original entry on oeis.org

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ... and the same line from 0, in the direction 1, 21, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the main diagonal in the spiral. - Omar E. Pol, Sep 09 2011
Also sequence found by reading the same line mentioned above in the square spiral whose vertices are the generalized enneagonal numbers A118277. Axis perpendicular to A195145 in the same spiral. - Omar E. Pol, Sep 18 2011
Sequence provides all integers m such that 56*m + 49 is a square. - Bruno Berselli, Oct 07 2015
Sum of the numbers from 3*n to 4*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

  • Magma
    [ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
    Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
    Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
    7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015

Formula

a(n) = (7/2)*n*(n+1).
G.f.: 7*x/(1-x)^3.
a(n) = (7*n^2 + 7*n)/2 = 7*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 7*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = A069099(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n-1), a(n+2) = A193053(n+2) + 2*A193053(n+1) + A193053(n). - Bruno Berselli, Oct 21 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 21.
a(n) = A174738(7*n+6).
a(n) = A179986(n) + n = A186029(n) + 2*n = A022265(n) + 3*n = A022264(n) + 4*n = A218471(n) + 5*n = A001106(n) + 6*n. (End)
a(n) = Sum_{i=3*n..4*n} i. - Wesley Ivan Hurt, Dec 22 2015
E.g.f.: (7/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/7)*(2*log(2) - 1). (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(7/(2*Pi))*cos(sqrt(15/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/(2*Pi))*cosh(Pi/(2*sqrt(7))). (End)

A185019 a(n) = n*(14*n-3).

Original entry on oeis.org

0, 11, 50, 117, 212, 335, 486, 665, 872, 1107, 1370, 1661, 1980, 2327, 2702, 3105, 3536, 3995, 4482, 4997, 5540, 6111, 6710, 7337, 7992, 8675, 9386, 10125, 10892, 11687, 12510, 13361, 14240, 15147, 16082, 17045, 18036, 19055, 20102, 21177, 22280, 23411, 24570
Offset: 0

Views

Author

Bruno Berselli, Oct 14 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).

Programs

  • Magma
    [n*(14*n-3): n in [0..42]];
    
  • Magma
    I:=[0,11,50]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    CoefficientList[Series[x (11 + 17 x)/(1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    for(n=0, 42, print1(n*(14*n-3)", "));
    

Formula

G.f.: x*(11+17*x)/(1-x)^3.
a(n) = A195025(-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Wesley Ivan Hurt, Dec 18 2020
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(11 + 14*x).
a(n) = n + A195023(n). (End)

A193053 a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.

Original entry on oeis.org

1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0

Views

Author

Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

For an origin of this sequence, see the numerical spiral illustrated in the Links section.

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).

Programs

  • Magma
    [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
  • Mathematica
    Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
  • PARI
    for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
    

Formula

O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017
a(n) = A195020(n) + n + 1.
a(n) - a(-n-1) = A047336(n+1).
a(n+1) - a(-n) = A113804(n+1).
a(n+2) - a(n) = A047385(n+3).
a(n+4) - a(n) = A113803(n+4).
a(2*n) + a(2*n-1) = A069127(n+1).
a(2*n) - a(2*n-1) = A016813(n).
a(2*n+1) - a(2*n) = A016777(n+1).
a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

A195320 7 times hexagonal numbers: a(n) = 7*n*(2*n-1).

Original entry on oeis.org

0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0

Views

Author

Omar E. Pol, Sep 18 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277.
Also sequence found by reading the same line (mentioned above) in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 7*n = 7*A000384(n).
G.f.: -7*x*(1+3*x)/(x-1)^3. - R. J. Mathar, Sep 27 2011
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 7*exp(x)*x*(2*x + 1).
a(n) = A316466(n) - n = A024966(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195014 Vertex number of a square spiral whose edges have length A195013.

Original entry on oeis.org

0, 2, 5, 9, 15, 21, 30, 38, 50, 60, 75, 87, 105, 119, 140, 156, 180, 198, 225, 245, 275, 297, 330, 354, 390, 416, 455, 483, 525, 555, 600, 632, 680, 714, 765, 801, 855, 893, 950, 990, 1050, 1092, 1155, 1199, 1265, 1311, 1380, 1428, 1500, 1550, 1625, 1677
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2011

Keywords

Comments

Zero together with the partial partial sums of A195013.
Second bisection is 2, 9, 21, 38, 60, 87, 119, ...: A005476. - Omar E. Pol, Sep 25 2011
Number of pairs (x,y) with even x in {0,...,n}, odd y in {0,...,3n}, and xClark Kimberling, Jul 02 2012

Crossrefs

Programs

  • Magma
    [(10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16 : n in [0..50]]; // Vincenzo Librandi, Oct 26 2014
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,2,5,9,15},60] (* Harvey P. Dale, May 20 2019 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: f(x)/g(x), where f(x) = 2*x + 3*x^2 and g(x) = (1+x)^2 * (1-x)^3. - Clark Kimberling, Jul 02 2012
a(n) = (10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16. - Luce ETIENNE, Aug 11 2014

A198017 a(n) = n*(7*n + 11)/2 + 1.

Original entry on oeis.org

1, 10, 26, 49, 79, 116, 160, 211, 269, 334, 406, 485, 571, 664, 764, 871, 985, 1106, 1234, 1369, 1511, 1660, 1816, 1979, 2149, 2326, 2510, 2701, 2899, 3104, 3316, 3535, 3761, 3994, 4234, 4481, 4735, 4996, 5264, 5539, 5821, 6110, 6406, 6709, 7019, 7336, 7660, 7991
Offset: 0

Views

Author

Bruno Berselli, Oct 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

First bisection of A193053 (see also the numerical spiral illustrated in the Links section).
The inverse binomial transform yields 1, 9, 7, 0, 0 (0 continued).

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).
Cf. A017005 (first differences).

Programs

  • Magma
    [n*(7*n+11)/2+1: n in [0..47]];
  • Mathematica
    Table[(n(7n+11))/2+1,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{1,10,26},60] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    for(n=0, 47, print1(n*(7*n+11)/2+1", "));
    

Formula

G.f.: (1 + 7*x - x^2)/(1-x)^3.
a(n) = A195020(2*n) + 2*n + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = 2*a(n-1) - a(n-2) + 7.
From Elmo R. Oliveira, Dec 24 2024: (Start)
E.g.f.: exp(x)*(2 + 18*x + 7*x^2)/2.
a(n) = n + A001106(n+1). (End)
Showing 1-10 of 27 results. Next