cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158492 a(n) = 100*n^2 + 10.

Original entry on oeis.org

10, 110, 410, 910, 1610, 2510, 3610, 4910, 6410, 8110, 10010, 12110, 14410, 16910, 19610, 22510, 25610, 28910, 32410, 36110, 40010, 44110, 48410, 52910, 57610, 62510, 67610, 72910, 78410, 84110, 90010, 96110, 102410, 108910, 115610, 122510, 129610, 136910, 144410
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (20*n^2 + 1)^2 - (100*n^2 + 10)*(2*n)^2 = 1 can be written as A158493(n)^2 - a(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 21 2012

Crossrefs

Programs

  • Magma
    I:=[10, 110, 410]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {10, 110, 410}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
    100Range[0,40]^2+10 (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    for(n=0, 40, print1(100*n^2 + 10", ")); \\ Vincenzo Librandi, Feb 21 2012

Formula

From Vincenzo Librandi, Feb 21 2012: (Start)
G.f.: -(10 + 80*x + 110*x^2)/(x-1)^3;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/sqrt(10))*Pi/sqrt(10))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/sqrt(10))*Pi/sqrt(10))/20. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: 10*exp(x)*(1 + 10*x + 10*x^2).
a(n) = 10*A158187(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 12 2009